• Title/Summary/Keyword: thermal isolation

Search Result 133, Processing Time 0.033 seconds

Image Reversal Photoresist for the Single Isolation Structure of OLEDs (오엘이디의 단열 소자분리 구조를 위한 이미지 라버셜 감광제)

  • Lee, Seung-Jun;Sin, Yun-Su;Chae, Gyeol-Yeo;Im, Dae-U;Choe, Gyeong-Hui
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2009.02a
    • /
    • pp.541-542
    • /
    • 2009
  • We have developed an image reversal photoresist with high thermal stability and electric insulating properties for the single isolation structure of OLEDs. The thermal stability and electric insulating properties are investigated and compared with those of conventional insulator and cathode separator materials. The single isolation structure using the image reversal photoresist reduces the fabrication process steps and cuts down the manufacturing cost.

  • PDF

Numerical Analysis for Thermal Isolation on Plasma Etched silicon micro-structures (DRIE 식각을 이용한 대면적 실리콘 미세 구조물 부유 시 발생하는 열고립 현상 해석)

  • Lee, Yong-Seok;Jang, Yun-Ho;Kim, Jung-Mu;Kim, Yong-Kweon
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1684-1685
    • /
    • 2011
  • This paper presents a theoretical and numerical analysis for thermal isolation of silicon micro-structures, especially for a large size with poor thermal conductivity, as well as straightforward solution for such an issue. Additional metal patterns underneath the silicon structures effectively reduces the thermal isolation. Heat transfer mechanism is analyzed using an equivalent circuit of thermal network including plasma, a heat source, heat capacitors, and thermal resistances. The FEM simulation was carried out to investigate the temperature change of silicon micro-structures according to process time. The temperature of silicon micro-structures with 2 ${\mu}m$ thick chrome layer at a steady state is $86^{\circ}C$, an approximately 40% decrease from the silicon microstructure without thin metal ($122^{\circ}C$)

  • PDF

A study on the Dislocation-Free Shallow Trench Isolation (STI) Process (Dislocation-Free Shallow Trench Isolation 공정 연구)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.84-85
    • /
    • 2005
  • Dislocations are often found at Shallow Trench Isolation (STI) process after repeated thermal cycles. The residual stress after STI process often leads defect like dislocation by post STI thermo-mechanical stress. Thermo-mechanical stress induced by STI process is difficult to remove perfectly by plastic deformation at previous thermal cycles. Embedded flash memory process is very weak in terms of post STI thermo-mechanical stress, because it requires more oxidation steps than other devices. Therefore, dislocation-free flash process should be optimized.

  • PDF

Thermal Property of the Roof Green Unit System Using Artificial Lightweight Soil Recycled with Bottom Ash (바텀애시 재활용 인공토양 적용 옥상녹화 유니트 시스템의 열특성)

  • Yoo, Jong-Su;Lee, Jong-Chan;Oh, Chang-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • In this study, the surface temperature of the roof green system using ALSRBA(Artificial Lightweight Soil Recycled with Bottom Ash) was measured in each season and the thermal property of the ALSRBA was investigated. As a result, it was certified that ALSBRA has superior thermal property than the usual artificial soil. In addition, The daily temperature range in each season was measured to investigate the thermal isolation property of EUS(Existing Unit System) and DUS(Developed Unit System). The result showed that the thermal isolation effect of EUS was lower than that of SPSS(Site-Place-Soil System), but thermal isolation effect of DUS was similar to that of SPSS because DUS has continuous ALSBRA layer by removing unit barrier.

EXPERIMENTS ON THE PERFORMANCE SENSITIVITY OF THE PASSIVE RESIDUAL HEAT REMOVAL SYSTEM OF AN ADVANCED INTEGRAL TYPE REACTOR

  • Park, Hyun-Sik;Choi, Ki-Yong;Choi, Seok;Yi, Sung-Jae;Park, Choon-Kyung;Chung, Moon-Ki
    • Nuclear Engineering and Technology
    • /
    • v.41 no.1
    • /
    • pp.53-62
    • /
    • 2009
  • A set of experiments has been conducted on the performance sensitivity of the passive residual heat removal system (PRHRS) for an advanced integral type reactor, SMART, by using a high temperature and high pressure thermal-hydraulic test facility, the VISTA facility. In this paper the effects of the opening delay of the PRHRS bypass valves and the closing delay of the secondary system isolation valves, and the initial water level and the initial pressure of the compensating tank (CT) are investigated. During the reference test a stable flow occurs in a natural circulation loop that is composed of a steam generator secondary side, a secondary system, and a PRHRS; this is ascertained by a repetition test. When the PRHRS bypass valves are operated 10 seconds later than the secondary system isolation valves, the primary system is not properly cooled. When the secondary system isolation valves are operated 10 or 30 seconds later than the PRHRS bypass valves, the primary system is effectively cooled but the inventory of the PRHRS CT is drained earlier. As the initial water level of the CT is lowered to 16% of the full water level, the water is quickly drained and then nitrogen gas is introduced into the PRHRS, resulting in the deterioration of the PRHRS performance. When the initial pressure of the PRHRS is at 0.1MPa, the natural circulation is not performed properly. When the initial pressures of the PRHRS are 2.5 or 3.5 MPa, they show better performance than did the reference test.

Development of Sound Isolation Sheets with Compound Materials (복합재료를 이용한 시트형 차음재 개발)

  • Lee, Dong-Hoon;Lee, Tae-Kun;Cheong, Seong-Kyun;Lee, Hee-Won;Kang, Moon;Kim, Young-Bae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.415-420
    • /
    • 2000
  • This paper describes a part of the results obtained in the process of the development of thin sound isolation sheets filled mineral compound powder with PVC. The raw materials used are pyrophillite, pottery stone and graphite. The physical properties such as the crystal structures, compositions, and specific gravities, etc. of raw materials are analyzed and discussed from a point of view of sound isolation material. From the analysis of experimental results, the particle size and the additive amount of mineral compound powder for manufacturing sample isolation sheets are decided. The resistant capability against fire of sound isolation sheets including mechanical, thermal and physical properties is tested. The transmission loss measuremenst of sound isolation sheets are performed using two-microphone method in an impedance tube. It is shown that the sound isolation capability of thin sheets has an excellent performance in excess of the object of development.

  • PDF

Concept Design of Vibration Isolation System for Development of Optical Payload of Satellite (위성광학탑재체 개발을 위한 나노급 방진장치 개념 설계)

  • Lee, Sang-Hoon;Cho, Hyok-Jin;Seo, Hee-Jun;Kim, Young-Key;Moon, Guee-Won;Moon, Sang-Moo;Kim, Hong-Bea
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.949-952
    • /
    • 2005
  • According to the national space program in Korea, is satellites will be launch into space up to 2015. Especially, KARI is going to develope of its own a high resolution camera of less than 1m to be mounted on next Multipurpose Satellite. When performing testing of large spacecraft or hardware that will be launched into orbit, it is necessary to conduct a testing with space-simulated environment. To achieve this requirement, thermal vacuum chamber is generally used. KARI has been developed a very Large Thermal Vacuum Chamber(LTVC) from 2003 to accomodate future space program, such as KOMPSAT, COMS, and Launch vehicles. This new facility will be used to qualify the first self developed High Resolution Camera, which will be loaded on KOMPSAT-3. To perform an optical test for space camera, it is necessary to provide vibration free environment. Thus the vibration responses on the optical table due to external vibration should be minimized by using a special isolation system. In this paper, we propose the concept design of vibration isolation system for the development of the high resolution camera.

  • PDF

Thermal Design of Cryogenic Compressor with Strategies for Keeping Performance of Micro-vibration Isolation System (미소진동저감용 진동절연기의 성능유지를 위한 극저온 냉각용 압축기 조립체 열제어 설계)

  • Oh, Hyun-Ung;Lee, Kyung-Joo;Jeong, Suk-Yong;Shin, So-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.237-242
    • /
    • 2012
  • Spaceborne pulse tube-type cryogenic compressors are widely used for space applications. To guarantee cooling performance of the compressor, mission life time and micor-vibration stability, suitable thermal control of compressor is required. Micro-vibration of the compressor is the one of the sources to degrade the pointing performance of observation satellite. In the present work, on-orbit thermal design of compressor in order not to degrade the performance of micro-vibration isolation system keeping the thermal control performance has been proposed and investigated through thermo-mechanical analysis.

Study on the Thermal and Dynamic Behaviors of Air Spring for vibration isolation of LCD panel inspecting machine connected with an External Chamber through a flexible tube: PART I, Theoretical Modeling (외부챔버와 유연한 튜브로 연결된 LCD 패널 검사기 방진용 공기 스프링의 열 및 동적 연성거동에 대한 연구: PART I, 이론적 모델링)

  • Seok, Jong-Won;Lee, Ju-Hong;Kim, Pil-Kee
    • Journal of the Semiconductor & Display Technology
    • /
    • v.10 no.1
    • /
    • pp.33-41
    • /
    • 2011
  • Due to the recent quantum leaps forward in bio-, nano-, and information-technologies (BT, NT and IT), the precisionization and miniaturization of mechanical and electrical components are in high demand. In particular, the ITrelated equipments that take a great part in our domestic industry are in the area requiring high precision technologies. As a consequence, the researches on the development vibration isolation systems that diminish external disturbance or internal vibration are highly required. Among the components comprising the vibration isolation system, air spring has become on a focal point for the researchers due to its merits. This air spring is able to support heavy loads, keep a low natural frequency despite of having a lower value of stiffness, and control the performance of vibration isolation. However, sometimes the sole use of air spring is in demand due to some economic reasons. Under this circumstance, the damping effect of sole air spring may not enough to reduce sufficient amount of vibration. In this study, the air spring mount system connecting with an external chamber is proposed to increase or control the damping effect. To investigate its damping mechanism, the thermal and dynamic behaviors of the system is examined through a theoretical modeling approach in this part of research. In this approach, thermomechanical and Helmholtz resonator type models are to be employed for the air spring/external chambers and connecting tube system, respectively. The frequency response functions (FRFs) derived from the modeling effort are evaluated with physical parametric values and the effects of connecting tube length on these FRFs are identified through computer simulations.