• Title/Summary/Keyword: thermal insulation rate

Search Result 160, Processing Time 0.029 seconds

Evaluation of Thermoregulatory Properties of Thermal Underwear Named as 'Heating Underwear' using Thermal Manikin and Human Performance Test ('발열내복'이라 광고되는 시판 기능성 보온내복의 써멀 마네킹과 인체 착용 실험을 통한 체온조절 성능 평가)

  • Lee, Hyo-Hyun;Lee, Young-Ran;Kim, Ji-Eun;Kim, Siyeon;Lee, Joo-Young
    • Fashion & Textile Research Journal
    • /
    • v.17 no.4
    • /
    • pp.657-665
    • /
    • 2015
  • This study evaluated the thermoregulatory properties of functional thermal underwear ('heating underwear') in markets using a thermal manikin and human wear trials. One ordinary thermal underwear (ORD) and two functional thermal underwear (HEAT1 and HEAT2; manufactured goods, HEAT1: moisture absorbing heat release mechanism, HEAT2: heat storage, release mechanism) were chosen. Thermo-physiological and subjective responses were evaluated at an air temperature of $5.0{\pm}0.5^{\circ}C$ and air humidity of $30{\pm}5%RH$ with five male subjects ($21.6{\pm}1.3yr$ in age, $178.0{\pm}5.9cm$ in height, $68.2{\pm}5.9kg$ in body mass). Experimental conditions consisted of four ensembles that included winter clothes (Control: no underwear, ORD, HEAT1, HEAT2). Water-vapor resistance was greater in fabric of HEAT1 than others. The results were: 1) Total thermal insulation (IT) using a thermal manikin were not greater for HEAT1 (0.860clo) and HEAT 2 (0.873clo) than for ORD (0.886clo). 2) There were no significant differences in rectal temperature, mean skin temperature, heart rate and total body mass loss between the four conditions. Microclimate clothing temperature on the back was greater for ORD than for HEAT1 and HEAT2. Subjects felt more comfortable with HEAT1 than for others at rest. HEAT2 was higher in microclimate humidity when compared to other conditions. The results suggest that thermoregulatory properties of 'heating underwear' in market did not differ from those of ordinary thermal underwear in terms of total thermal insulation and thermoregulatory responses in a cold environment.

Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications (칩 마운터용 리니어 모터 스테이지의 열저항 모델링)

  • Jang, Chang-Su;Kim, Jong-Yeong;Kim, Yeong-Jun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.5
    • /
    • pp.716-723
    • /
    • 2002
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model (TRM) was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than 7$^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air and -water flow rate.

Thermal Resistance Modeling of Linear Motor Driven Stages for Chip Mounter Applications (칩 마운터용 리니어 모터 스테이지의 열저항 모델링)

  • Jang, Chang-Soo;Kim, Jong-Young;Kim, Yung-Joon
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.96-101
    • /
    • 2001
  • Heat transfer in linear motor driven stages for surface mounting device applications was investigated. A simple one-dimensional thermal resistance model was introduced. In order to reduce three-dimensional nature to one-dimensional, a few assumptions and simplifications were employed suitably. A good agreement with a finite element heat transfer analysis in temperature profile was obtained. For validation, the analysis was compared with the measurement with respect to motor driving power. Overall discrepancy was less than $7^{\circ}C$. The influence of two high thermal resistance parts, insulation sheet and thermal contact between the coil assembly and the mounting plate, was examined through the analysis. Additionally, the thermal resistance analysis was applied to another stage including an internal cooling-air passage, and was found available for this system as well. After validation, the cooling effect was surveyed in terms of motor power, and cooling-air flow rate.

  • PDF

A Study on the Thermal Analysis of Spray Cooling for the Membrane Type LNGC During the Cool-Down Period (급냉각기간에서 멤브레인형 LNGC의 분무냉각 열해석에 관한 연구)

  • Lee, Jung-Hye;Kim, Kyung-Kue;Ro, Sung-Tack;Chung, Han-Shik;Kim, Seong-Gyu
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.125-134
    • /
    • 2003
  • The present paper is concerned to the thermal analysis during the cool-down period of 138,000 m$^3$class GTT MARK-III membrane type LNG carrier servicing with LNG from the Middle East to Korea. It is the cool-down period that cools the insulation wall and the gas in LNG tank to avoid the thermal shock as the start of loading of -162$^{\circ}C$ LNG. For six hours of the standard cool-down period, the temperature of NG falls down from -4$0^{\circ}C$ to -13$0^{\circ}C$ and especially the mean temperature of the 1st barrier in the top side insulation wall falls down from -38.38$^{\circ}C$ to -122.42$^{\circ}C$ in case of IMO design condition. By the 3-D numerical calculation about the cargo tank and the cofferdam, the temperature variation in hulls and insulations is precisely predicted in this paper. And the mean temperature variation of gas is calculated as the function of the spraying rate by the heat balance model during the cool-down period.

Cell morphology of microcellular foaming injection molding products with pressure drop rate (초미세 발포 사출 시 핵 생성장치를 이용한 셀 크기의 변화)

  • 김학빈;차성운
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.491-495
    • /
    • 2004
  • The industries use polymer materials for many purposes for they have many merits. The costs of these materials take up too great a proportion of the overall cost of products that use these materials as their major material. It is advantage for polymer industries to reduce these costs. The microcellular foaming process was developed in the early 1980s to solve this problem and proved to be quite successful. Microcellular foaming process uses inert gases such as $CO_2$, $N_2$. As these gases solve into polymer matrices, many properties are changed. The microcellular foaming process makes the glass transition temperature of polymers to low, and diminish the residual stress of polymer matrices. Besides, the microcellular foaming process has several merits, impact strength elevation, thermal insulation, noise insulation, and raw material saving etc. This characteristic of microcellular foaming process has influenced by cell morphology. The cell morphology means cell size and cell density. The cell morphology has influenced by many factors. The examples of factor are pressure drop rate, foaming temperature, foaming time, saturation pressure, saturation time etc. Among their factors, pressure drop rate is the most important factor for cell morphology in microcellular foaming injection molding process. This paper describes about the cell morphology change in accordance with the pressure drop rate of microcellular foaming injection molding process.

  • PDF

Analysis of Two Phase Natural Circulation Flow in the Reactor Cavity under External Vessel Cooling (원자로용기 외벽냉각시 원자로공동에서 이상유동 자연순환 해석)

  • Park, Rae-Joon;Ha, Kwang-Soon;Kim, Sang-Baik;Kim, Hee-Dong
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.2141-2145
    • /
    • 2004
  • As part of study on thermal hydraulic behavior in the reactor cavity under external vessel cooling in the APR (Advanced Power Reactor) 1400, one dimensional two phase flow of steady state in the reactor cavity have been analyzed to investigate a coolant circulation mass flow rate in the annulus region between the reactor vessel and the insulation material using the RELAP5/MOD3 computer code. The RELAP5/MOD3 results have shown that a two phase natural circulation flow of 300 - 600 kg/s is generated in the annulus region between the reactor vessel and the insulation material when the external vessel cooling has been applied in the APR 1400. An increase in the heat flux of the inner vessel leads to an increase of the coolant mass flow rate. An increase in the coolant outlet area leads to an increase in the coolant circulation mass flow rate, but the coolant inlet area does not effective on the coolant circulation mass flow rate. The change of the lower coolant outlet to a lower position affects the coolant circulation mass flow rate, but the variation trend is not consistent.

  • PDF

Effect of Concrete Containing the Biochar on Properties and Thermal Insulation Performance (바이오차를 혼입한 콘크리트의 물성 특성과 단열성능에 미치는 영향)

  • Kyoung-Chul, Kim;Kyung-Taek, Koh;Min-Su, Son;Gum-Sung, Ryu;Jae-Yoon, Kang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.4
    • /
    • pp.428-434
    • /
    • 2022
  • This study intends to develop an eco-friendly concrete panel mixed with biochars. Experiments about mechanical and thermal properties were conducted on porous biochar concrete, which has insulation and carbon-capture performance. The concrete has a mixing ratio of 0, 5, 10, and 15 % for biochar and a water-binder ratio of 0.35. The unit weight, porosity, and permeability were measured to evaluate the mechanical characteristics. From the results, as the biochar mixing rate increased, the porosity and the permeability increased, but the unit weight decreased. Even though a decreased trend was observed in the compressive strength results, they satisfied the design standard. Since the thermal conductivity was decreased during the increase of contents, biochar could be considered an excellent material for insulation performance. In addition, regression analyses were conducted regarding the relationship of unit weight with porosity, compressive strength with thermal conductivity, and porous with thermal conductivity. From the regression, significant variables for expanding the scope of the application of biochar were presented.

A Study on Thermal Insulator Effect for Structure Design of Internal Support on Cryogenic Vessel (단열재가 극저온 용기의 내부지지대 구조설계에 미치는 영향)

  • Kim, Doo-Ho;Ji, Hyun-Jin;Kim, Ki-Youl;Cho, Sung-Baek
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.14 no.3
    • /
    • pp.524-531
    • /
    • 2011
  • The cryogenic vessel, storing a liquified solutions as LOX and $LN_2$, consists of a external vessel, internal vessel, thermal insulator and internal support. The internal support should be satisfied with mechanical strength not only to support weight of internal tank but also to maintain uniform space between external and internal tank in spite of external mechanical shock. However, excessive structure design of internal supports is able to increase the amount of heat conduction and the rate of vaporization. The thermal insulator, filled with space between a external and internal vessel, reduces the rate of heat transfer and guarantees the standing time of cryogenic vessel. Especially powder type of insulator has low thermal conductivity and reduce the specification of structure design. In order to evaluate the effect of insulator on structure design, the experiment set-up simulated cryogenic vessel was tested in shock environment according to thermal insulator. As a result, the behavior of internal support under external shock was understood and the design criteria was able to be suggested.

The study of in-situ measurement method for wall thermal performance diagnosis of existing apartment (기존 공동 주택의 벽체 열성능 현장 측정법에 관한 연구)

  • Kim, Seohoon;Kim, Jonghun;Yoo, Seunghwan;Jeong, Hakgeun;Song, Kyoodong
    • KIEAE Journal
    • /
    • v.16 no.4
    • /
    • pp.71-77
    • /
    • 2016
  • Purpose : The energy saving in a residential building (apartment) sector is known as one of the effective solution of energy reduction. In South Korea, the government has recently reinforced regulations associated with the energy performance of buildings. However, there is a lack of research on the methods for the energy performance diagnosis that is used to analyze the wall thermal performance of the existing apartments. Because a reliable diagnosis is necessary to save the building energy, this study analyzed wall thermal performance of an existing apartment in Seoul. Method : This paper applied two methods for analysis of the thermal insulation performance; HFM(Heat Flow Meter) method and ASTR(Air-Surface Temperature Ratio) method. The HFM method is suggested by ISO9869-1 code to measure the thermal performance. The ASTR method is proposed by this study for the simplified In-situ measurement and it uses three temperature data (interior wall surface, interior and exterior air) and the overall heat transfer coefficient. This study conducted the experiment of an existing apartment in Seoul using these methods and analyzed the results. Furthermore, the energy simulation tool of the building was used to suggest retrofit of the building based on the results of measurements. Result : The error rate of HFM method and ASTR method was analyzed in about 17 to 20%. As the results of comparison between the initial design values of the wall and the measured values, the 26% degradation of insulation thermal performance was measured. Lastly, the energy simulation tool of the building shows 10.8% energy savings in accordance with the construction of suggested retrofit.

Energy Performance Evaluation of Zero Energy Technologies for Zero Energy Multi-House (공동주택의 에너지 자립을 위한 핵심요소기술의 에너지 성능평가)

  • Yoon, Jong-Ho;Kim, Byoung-Soo
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.161-167
    • /
    • 2007
  • Zero Energy Multi-House(ZeMH) signifies a residential building which can be self sufficient with just new and renewable energy resources without the aid of any existing fossil fuel. For success of ZeMH, various innovative energy technologies Including passive and active systems should be well integrated with a systematic design approach. The first step for ZeMH is definitely to minimize the conventional heating and cooling loads over 50% with major energy conservation measure and passive solar features which are mainly related to building design components such as super-insulation, super window, including infiltration and ventilation issues. The purpose of this study is to analyze the thermal effect of various building design components in the early design of ZeMH. The process of the study is presented in the following. 1) selection reference model for simulation 2) verification of reference model with computer simulation program(ESP-r 9.0). 3) analysis of effect according to insulation-thickness, kinds of windows, rate of infiltration. and The simulation results indicate that almost 50% savings of conventional heating load in multi-house can be achieved with the optimum design of building components such as super insulation, super window, infiltration, ventilation.