• Title/Summary/Keyword: thermal initiation

Search Result 147, Processing Time 0.026 seconds

Rheological and Thermal Properties of Acrylonitrile-Acrylamide Copolymers: Influence of Polymerization Temperature

  • Wu Xueping;Lu Chunxiang;Wu Gangping;Zhang Rui;Ling Licheng
    • Fibers and Polymers
    • /
    • v.6 no.2
    • /
    • pp.103-107
    • /
    • 2005
  • An attempt was made to correlate the polymerization temperature and rheological and thermal properties of acrylonitrile (AN)-acrylamide (AM) copolymers. The copolymers were synthesized at different polymerization temperature. The copolymer structure was characterized by gel permeation chromatography (GPC) and Infrared spectrum (IR). The rheological and thermal properties were investigated by a viscometer and differential scanning calorimeter-thermogrametric (DSC-TG) analysis, respectively. When the polymerization temperature increased from $41^{\circ}C\;to\;65^{\circ}C$, the molecular weight $(\bar{M}_w)$ of copolymers decreased from 1,090,000 to 250,000, while its conversion increased from $18\%\;to\;63\%$, and the polymer composition changed slightly. To meet the requirements of carbon fibers, the rheological and thermal properties of products were also investigated. It was found that the relationship between viscosity and $\bar{M}_w$ was nonlinear and the viscosity index (n) decreased from 3.13 to 2.69, when the solution temperature increased from $30^{\circ}C\;to\;65^{\circ}C$. This suggests the dependence of viscosity upon $\bar{M}_w$ is higher at lower solution temperature. According to the result of activation energy, the sensivity of viscosity to solution temperature is higher for AN-AM copolymers synthesized at higher polymerization temperature. The result of thermal analysis shows that the copolymers obtained at higher polymerization temperature are easier to cyclization evidenced from lower initiation temperature. The weight loss behavior changed irregularly with polymerization temperature due to irregular change of liberation heat.

Effects of Methacrylamide Treatment on Silk Fibers II. Thermal Behavior of Methacrylamide-treated Silk Fibers (견섬유에 대한 메타크릴아미드의 처리효과 II. 메타크릴아미드 처리견의 열적 거동에 관하여)

  • 신봉섭;남중희
    • Journal of Sericultural and Entomological Science
    • /
    • v.34 no.1
    • /
    • pp.49-56
    • /
    • 1992
  • Treatment of vinyl monomers onto silk fiber modifies the properties of the original silk fiber considerably. This field has been the subject of investigation by many workers using chemical and radiation initiation. Many studies on the reaction conditions, polymerization mechanism, physical properties and practical performances of methacrylamide-treated silk fiber have been continued. However, the polymerization mechanism has not been clearly revealed yet and this remains ambiguously whether the grafting is formed on fiber or not. In general, it has been accepted that free radicals were formed and vinyl monomers were polymerized in silk fibroin by graft polymerization mechanism, while active sties were varied by the types of monomer and initiator as well as by the reaction conditions. On the other hand, there is another argument on polymerization mechanism, in which monomers are polymerized and impregnated in the internal side of the fiber by homopolymerization. Though a large number of analytical methods are used to examine the polymerization mechanism of methacrylamide-treated silk fiber, the results on the basis of thermal analysis are merely reported in this paper. In differential scanning calorimetry (DSC) analysis, the thermal decomposition behaviors of the methacrylamie-treated silk fibers were determined and compared to those of the controlled silk fibers. DSC curves obtained from the methacrylamide-treated silk fibers showed double peaks at around 290$^{\circ}C$ (A peak) and 320$^{\circ}C$ (B peak) which are attributed to the thermal decomposition of the methacrylamide polymer and silk fibroin fiber, respectively. The temperature of A and B peak shifted to higher value with the increase of add-on. Also, the moisture regain of the treated silk fibers increased with add-on.

  • PDF

Reliability of Sn-8Zn-3Bi Solder Paste Applied to Lead and Lead-free Plating on Lead-frame under Thermal Shock Test (다양한 유무연 도금 리드프레임에 적용된 Sn-8Zn-3Bi 솔더 접합부의 열충격 신뢰성 평가)

  • Han, Sung-Won;Cho, Il-Je;Shin, Young-Eui
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.2 s.43
    • /
    • pp.35-40
    • /
    • 2007
  • The pull strength and fracture mechanism were investigated to evaluate the reliability and compatibility of Sn-8Zn-3Bi joints, the solder paste on lead and lead-free plating under thermal shock conditions. At the Sn-8Zn-3Bi solder joint, no crack initiation was observed during thermal shock test. After 1000 cycles, the strength of the solder joint decreased not sharply but reduced gradually compared with initial conditions. The decrement of strength was affected by ${\gamma}-Cu_5Zn_8$ IMC growth which caused the IMC fracture on the fracture surface and a change in fracture mode and initial crack point. Clearly, the Sn-8Zn-3Bi solder shows good reliability properties and compatibility with lead-free plated Cu LF under thermal shock temperatures between 248K and 423K.

  • PDF

Characterization of aluminized RDX for chemical propulsion

  • Yoh, Jai-ick;Kim, Yoocheon;Kim, Bohoon;Kim, Minsung;Lee, Kyung-Cheol;Park, Jungsu;Yang, Seungho;Park, Honglae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.3
    • /
    • pp.418-424
    • /
    • 2015
  • The chemical response of energetic materials is analyzed in terms of 1) the thermal decomposition under the thermal stimulus and 2) the reactive flow upon the mechanical impact, both of which give rise to an exothermic thermal runaway or an explosion. The present study aims at building a set of chemical kinetics that can precisely model both thermal and impact initiation of a heavily aluminized cyclotrimethylene-trinitramine (RDX) which contains 35% of aluminum. For a thermal decomposition model, the differential scanning calorimetry (DSC) measurement is used together with the Friedman isoconversional method for defining the frequency factor and activation energy in the form of Arrhenius rate law that are extracted from the evolution of product mass fraction. As for modelling the impact response, a series of unconfined rate stick data are used to construct the size effect curve which represents the relationship between detonation velocity and inverse radius of the sample. For validation of the modeled results, a cook-off test and a pressure chamber test are used to compare the predicted chemical response of the aluminized RDX that is either thermally or mechanically loaded.

Thermal Shock Behavior of $Al_2O_3$-$ZrO_2$ Ceramics Prepared by a Precipitation Method (침전법으로 제조한 $Al_2O_3$-$ZrO_2$계 세라믹스의 열충격 거동)

  • 홍기곤;이홍림
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.1
    • /
    • pp.11-18
    • /
    • 1991
  • A precipitation method, one of the most effective liquid phase reaction methods, was adopted in order to prepare high-tech Al2O3/ZrO2 composite ceramics, and the effects of stress-induced phase transformation of ZrO2 on thermal shock behavior of Al2O3-ZrO2 ceramics were investigated. Al2(SO4)3.18H2O, ZrOCl2.8H2O and YCl3.6H2O were used as starting materials and NH4OH as a precipitation agent. Metal hydroxides were obtained by single precipitation(process A) and co-precipitation(process B) method at the condition of pH=7, and the composition of Al2O3-ZrO2 composites was fixed as Al2O3-15v/o ZrO2(+3m/o Y2O3). Critical temperature difference showing rapid strength degradation by thermal shock showed higher value in Al2O3/ZrO2 composites(process A : 20$0^{\circ}C$, process B : 215$^{\circ}C$) than in Al2O3(175$^{\circ}C$). The improvement of thermal shock property for Al2O3/ZrO2 composites was mainly due to the increase of strength at room temperature by adding ZrO2. The strength degradation was more severe for the sample with higher strength at room temperature. Crack initiation energies by thermal shock showed higher values in Al2O3/ZrO2 composites than in Al2O3 ceramics due to increase of fracture toughness by ZrO2.

  • PDF

Risk evaluation of EVA dust with oxidizer by a pressure vessel (압력용기시험에 의한 EVA분진의 혼촉 위험성 평가)

  • 이창우;김정환;현성호
    • Fire Science and Engineering
    • /
    • v.13 no.4
    • /
    • pp.7-12
    • /
    • 1999
  • Thermal properties of EVA dust and its risks of coexisting with oxidizer were investigated by a pressure vessel. The decomposition of EVA dust with temperature using DSC and the weight loss with temperature using TGA were also investigated to find the thermal hazard of EVA dust. Using the pressure vessel which can estimate ignition and explosion of EVA dust coexisting with oxidizer by bursting of a rupture disc, many experiments have been conducted by varying the orifice diameter, heating rate, the weight ratio of the sample coexisting with oxidizer, and the species of oxidizer. According to the results of the thermal analysis of EVA dust, a little change of the decomposition initiation temperature with the heating rate could be found and the decomposition temperature zone of EVA dust was 250 to 50$0^{\circ}C$. The risk of EVA dust coexisting with oxidizer was increased as the orifice diameter was decreased. On the other hand, it was increased as the heating rate and the weight ratio of the sample coexisting with oxidizer were increased. In addition, the risk of EVA dust coexisting with oxidizer was affected by the decomposition temperature of the sample and oxidizer, respectively, at slow heating rate, but it was affected by the oxygen weight percent of oxidizer at fast heating rate.

  • PDF

Non-isothermic Analysis of Reaction Rate for the Thermal Decomposition of Na2B4O7·10H2O (Na2B4O7·10H2O 열분해 반응속도의 비등온해석)

  • Choi, Ho-Sang;Park, Young-Tae;Lee, Soo-Kag
    • Applied Chemistry for Engineering
    • /
    • v.8 no.6
    • /
    • pp.1029-1033
    • /
    • 1997
  • Fundamental research of non-isothermic analysis of reaction rate has been carried out for the heat storage system using the thermal decomposition of $Na_2B_4O_7{\cdot}10H_2O$. It was found that the equilibrium temperature of the thermal decomposition reaction was lowered less than 373K in $Na_2B_4O_7{\cdot}10H_2O/Na_2B_4O_7{\cdot}5H_2O$ system, but the heat efficiency was unchanged. The initiation temperature of the reaction was varied from low to high temperature region with heating rate. The reaction order of the dehydration reaction by the thermal decomposition was appeared to be 0.67 by non-isothermic analysis, thereby $Na_2B_4O_7{\cdot}10H_2O$ may be used as a hemical heatstorage material.

  • PDF

Integrity evaluation of Kori 1 reactor vessel for Rancho Seco transient (Rancho Seco Transient에 대한 고리 1호기 원자로용기의 건전성 평가)

  • Jhung, M.J;Park, Y.W;Lee, J.B
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.7
    • /
    • pp.1089-1096
    • /
    • 1997
  • In this paper, Rancho Seco transient which is reported as a typical pressurized thermal shock event is postulated to be occuring in the Kori unit 1 plant, the oldest nuclear power plant in Korea. For the given material properties, transient history such as temperature and pressure, and postulated flaw, the stress distribution is obtained to calculate stress intensities for a wide range of assumed crack sizes. The stress intensities are compared with the fracture toughness, which is determined using the material properties and the distribution of the nil ductility transition temperature, to determine if cracking is expected to occur during the transient. The allowable operating year for the transient is determined and the evaluation results are discussed.

Damage Evaluation of Wheel Tread for High Speed Train Using Replication and Fracture Mechanics Characteristics (비파괴적 표면조직검사법과 파괴역학 특성에 따른 고속철도용 차륜 답면의 손상 평가)

  • Kwon, Seok-Jin;Lee, Dong-Hyung;Seo, Jung-Won;Kwon, Sung-Tae
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.7 s.262
    • /
    • pp.756-763
    • /
    • 2007
  • The majority of catastrophic wheel failures are caused by surface opening fatigue cracks either in the wheel tread or wheel flange areas. The inclined cracks at railway wheel tread are initiated and the cracks are caused by wheel damage-spatting after 60,000 km running. Because the failured railway wheel is reprofiled before regular wheel reprofiling, the maintenance cost for the railway wheel is increased. Therefore, it is necessary to analyze the mechanism for initiation of crack. In the present paper, the combined effect on railway wheels of a periodically varying contact pressure and an intermittent thermal braking loading is investigated. To analyze damage cause for railway wheels, the measurements for replication of wheel surface and the effect of braking application in field test are carried out. The result shows that the damages in railway wheel tread are due to combination of thermal loading and ratcheting.

A Characteristics of Crack Behavior on Graphite (그라파이트 재료의 고온 크랙특성 평가)

  • Koo, Song-Hoe;Lee, Young-Shin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.417-420
    • /
    • 2009
  • The purpose of the present study is to evaluate high temperature fracture toughness through the experimental and analytical method. The analysis method is proposed to simulate the fracture toughness of high temperatures. Load-COD curves of compact test specimen acquired by finite element method analysis using hypo elastic model are simulated to determine the crack initiation load on high temperatures. The results of experimental work are in accord with analysis in thermal shock test.

  • PDF