• 제목/요약/키워드: thermal inertia

검색결과 93건 처리시간 0.027초

Vibrations and thermal stability of functionally graded spherical caps

  • Prakash, T.;Singh, M.K.;Ganapathi, M.
    • Structural Engineering and Mechanics
    • /
    • 제24권4호
    • /
    • pp.447-461
    • /
    • 2006
  • Here, the axisymmetric free flexural vibrations and thermal stability behaviors of functionally graded spherical caps are investigated employing a three-noded axisymmetric curved shell element based on field consistency approach. The formulation is based on first-order shear deformation theory and it includes the in-plane and rotary inertia effects. The material properties are graded in the thickness direction according to the power-law distribution in terms of volume fractions of the constituents of the material. The effective material properties are evaluated using homogenization method. A detailed numerical study is carried out to bring out the effects of shell geometries, power law index of functionally graded material and base radius-to-thickness on the vibrations and buckling characteristics of spherical shells.

위성체 2-D 구조물의 열 안정성 해석 (Thermal Stability Analysis of 2-D Spacecraft Appendage)

  • 윤일성;송오섭;김규선
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2001년도 추계학술발표대회 논문집
    • /
    • pp.99-104
    • /
    • 2001
  • Thermally induced vibration response of solar array is investigated. The solar array model consists of composite thin walled beam and solar blanket, spreader bar. The composite thin walled beam incorporates a number of nonclassical effects of transverse shear, primary and secondary warping, rotary inertia and anisotropy of constituent materials. The solar blanket is a membrane subjected to uniform tension in the z direction. The spreader bar is a rigid member. A coupled thermal structure analysis that includes the effects of structural deformations on heating and temperature gradient is investigated. A stability criterion given in parameters for establishes the conditions for thermal flutter.

  • PDF

Experimental Observations of Boiling and Flow Evolution in a Coiled Tube

  • Ye, P.;Peng, X.F.;Wu, H.L.;Meng, M.;Gong, Y. Eric
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • 제16권1호
    • /
    • pp.22-29
    • /
    • 2008
  • A sequence of visually experimental observations was conducted to investigate the flow boiling and two-phase flow in a coiled tube. Different boiling modes and bubble dynamical evolutions were identified for better recognizing the phenomena and understanding the two-phase flow evolution and heat transfer mechanisms. The dissolved gases and remained vapor would serve as foreign nucleation sites, and together with the effect of buoyancy, centrifugal force and liquid flow, these also induce very different flow boiling nucleation, boiling modes, bubble dynamical behavior, and further the boiling heat transfer performance. Bubbly flow, plug flow, slug flow, stratified/wavy flow and annular flow were observed during the boiling process in the coiled tube. Particularly the effects of flow reconstructing and thermal non-equilibrium release in the bends were noted and discussed with the physical understanding. Coupled with the effects of the buoyancy, centrifugal force and inertia or momentum ratio of the two fluids, the flow reconstructing and thermal non-equilibrium release effects have critical importance for flow pattern in the bends and flow evolution in next straight sections.

Study on the Defects Detection in Composites by Using Optical Position and Infrared Thermography

  • Kwon, Koo-Ahn;Park, Hee-Sang;Choi, Man-Yong;Park, Jeong-Hak;Choi, Won Jae
    • 비파괴검사학회지
    • /
    • 제36권2호
    • /
    • pp.130-137
    • /
    • 2016
  • Non-destructive testing methods for composite materials (e.g., carbon fiber-reinforced and glass fiber-reinforced plastic) have been widely used to detect damage in the overall industry. This study detects defects using optical infrared thermography. The transient heat transport in a solid body is characterized by two dynamic quantities, namely, thermal diffusivity and thermal effusivity. The first quantity describes the speed with thermal energy diffuses through a material, whereas the second one represents a type of thermal inertia. The defect detection rate is increased by utilizing a lock-in method and performing a comparison of the defect detection rates. The comparison is conducted by dividing the irradiation method into reflection and transmission methods and the irradiation time into 50 mHz and 100 mHz. The experimental results show that detecting defects at 50 mHz is easy using the transmission method. This result implies that low-frequency thermal waves penetrate a material deeper than the high-frequency waves.

A Time Dependent Analysis of Thermal Environment in Beehouse

  • Lee, Suk-Gun;Li, Zhenhai;Choi, Kwang-Soo
    • 한국생물환경조절학회:학술대회논문집
    • /
    • 한국생물환경조절학회 1997년도 가을 심포지움 및 학술논문발표요지
    • /
    • pp.20-26
    • /
    • 1997
  • The design or analysis of beehouse inside temperature environment based on steady heat transfer theory causes much deviation and theoretically it is impossible to control the inside temperature lower than the outside temperature under the condition that the bee produces heat and no cooling equipment is installed. But in practical use of beehouse, the inside temperature is somehow lower than the outside temperature because of the heat inertia of concrete floor. (omitted)

  • PDF

위성체 유연 보 구조물의 열 안정성 해석 (Thermal Stability Analysis of a Flexible Beam Spacecraft Appendage)

  • 윤일성;송오섭
    • Composites Research
    • /
    • 제15권3호
    • /
    • pp.18-29
    • /
    • 2002
  • 본 논문에서는 얇은 벽보로 모델링 한 위성체 구조물에 입사되는 열 하중에 의해 발생하는 굽힘 진동과 열적 플러터에 대하여 연구하였다. 복합재료 얇은 벽보는 회전관성과 1차, 2차 와핑, 전단변형의 비고전적 요소를 포함한다. CUS구조물로 모델링한 복합재료 얇은 벽보의 열 진동 특성은 적층 순서와 섬유강화복합재료의 방향특성인자로부터 기인된 종방향 굽힘과 횡방향 굽힘의 언성과 관련하여 연구되었다. 수치 해석적인 방법으로 열적 플러터의 안정성 영역의경계값을 구하였으며, 태양 열 플럭스의 입사각, 감쇠계수, 섬유각의 변화에 의한 보의 변위를 구하였다. 주 구조물에 압전소자를 부착하여, 감지기와 작동기로 사용하여 제어해석을 수행하였다.

위성체 태양전지판 구조물의 열적 플러터 해석 (Thermal Flutter Analysis of Spacecraft Solar Array Structure)

  • 윤일성;강호식;정남희;송오섭
    • 한국항공우주학회지
    • /
    • 제33권7호
    • /
    • pp.26-32
    • /
    • 2005
  • 본 논문에서는 위성체 태양전지의 진동응답을 분석하였다. 태양전지는 복합재료 얇은 벽보와 태양전지 판 및 보조 바로 구성되어 있다. 복합재료 얇은 벽보는 전단 변형, 12차 와핑, 회전 관성과 재료의 방향성 등을 고려해야 한다. 태양전지 판은 z 방향으로 일정한 장력이 가해지는 얇은 막이며 보조 바는 강체 구조물이다. 열적 구배에 따른 구조 변형에 의한 영향을 고려하여 연성된 열적 구조 해석을 수행하였으며, 열적 불안정성 조건이 되는 안정성 기준 인자들을 분석하였다.

Thermo-mechanical vibration analysis of temperature-dependent porous FG beams based on Timoshenko beam theory

  • Ebrahimi, Farzad;Jafari, Ali
    • Structural Engineering and Mechanics
    • /
    • 제59권2호
    • /
    • pp.343-371
    • /
    • 2016
  • In this paper thermo-mechanical vibration analysis of a porous functionally graded (FG) Timoshenko beam in thermal environment with various boundary conditions are performed by employing a semi analytical differential transform method (DTM) and presenting a Navier type solution method for the first time. The temperature-dependent material properties of FG beam are supposed to vary through thickness direction of the constituents according to the power-law distribution which is modified to approximate the material properties with the porosity phases. Also the porous material properties vary through the thickness of the beam with even and uneven distribution. Two types of thermal loadings, namely, uniform and linear temperature rises through thickness direction are considered. Derivation of equations is based on the Timoshenko beam theory in order to consider the effect of both shear deformation and rotary inertia. Hamilton's principle is applied to obtain the governing differential equation of motion and boundary conditions. The detailed mathematical derivations are presented and numerical investigations are performed while the emphasis is placed on investigating the effect of several parameters such as porosity distributions, porosity volume fraction, thermal effect, boundary conditions and power-low exponent on the natural frequencies of the FG beams in detail. It is explicitly shown that the vibration behavior of porous FG beams is significantly influenced by these effects. Numerical results are presented to serve benchmarks for future analyses of FG beams with porosity phases.

열안정성을 고려한 초소형 정보저장기기용 액추에이터 구조설계 (Structural design of small form factor swing arm type actuators with thermal stability)

  • 박철;유정훈;박노철;박영필;도야건;중촌자남
    • 정보저장시스템학회논문집
    • /
    • 제2권3호
    • /
    • pp.208-213
    • /
    • 2006
  • The present state of the design of swing arm actuators for optical disc drives is to obtain the high efficient dynamic characteristics within a very compact volume. As a necessary consequence, the need of the small form factor (SFF) storage device has been arisen as major interests in the information storage technology. In this paper, we suggest the miniaturized swing arm type actuator that has high efficient dynamic characteristics for SFF optical disk drive (ODD). For the operating mechanism, it uses a tracking electromagnetic (EM) circuit for a focusing motion together. Moreover, due to the size constraint, the thermal stability of optical head is important. Therefore, the actuator is designed to emit the heat, which is generated by optical pick-up, along the actuator body easily. Initial model is designed based on the topology optimization method considering the thermal conductivity. Then, the structural parts of the actuator are modified to maintain the high sensitivity and to have wide control bandwidth by the design of experiments method (DOE) and new concept of decreasing mass and inertia. Finally, a swing arm type actuator for SFF ODD is suggested and its dynamic characteristics are verified.

  • PDF

빙축 및 냉방열과정중 냉각유체와 Ice Ball사이의 열적 특성에 관한 실험적 연구 (An Experimental Study on Thermal Characteristics between Cooling Fluid and Ice Ball during Charging and Discharging Precesses)

  • 박경원;박이동;황영규;김윤제
    • 한국에너지공학회:학술대회논문집
    • /
    • 한국에너지공학회 1996년도 추계학술발표회 논문집
    • /
    • pp.193-205
    • /
    • 1996
  • This paper deals with experimental study on thermal characteristics that a cooling fluid is affected to ice ball as being measuring the temperature in storage tank and ice ball governing the rate of heat storage. Distributor was taken as inlet geometry factor. flow rate of cooling fluid which was a brine were 2, 4, and 6LPM, and 8, 10, and 12$^{\circ}C$ in the temperature difference for dynamic factors with respect to three ice ball types(103, 96, 76mm). In case of in flowing cooling fluid, since inertia force is suppressed by lower flow rate the amount of heat was transferred to ice ball by heat conduction high because density difference is high. And in case of larger ice ball, a long-term storage was available because reaching time at steady state is relatively long. consequently, smaller ice ball could be suitable to a short-term storage.

  • PDF