• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.028 seconds

Preparation of W-V functionally gradient material by spark plasma sintering

  • Tang, Yi;Qiu, Wenbin;Chen, Longqing;Yang, Xiaoliang;Song, Yangyipeng;Tang, Jun
    • Nuclear Engineering and Technology
    • /
    • v.52 no.8
    • /
    • pp.1706-1713
    • /
    • 2020
  • Functionally gradient material (FGM) is promisingly effective in mitigating the thermal stress between plasma facing materials (PFM) and structural materials. However, the corresponding research with respect to W/V FGM has not been reported yet. In this work, we firstly report the successful fabrication of W/V FGM by a combined technology of mechanical alloying (MA) and spark plasma sintering (SPS). The microhardness and microstructure of the consolidated sample were both investigated. W/V stacks show significantly enhanced microhardness (>100%) compared with pure W plate, which is beneficial to the integral strength of the hybrid structure. Furthermore, we clarify that the different ductility of W and V should be carefully considered, otherwise W/V powder might aggregate and lead to the formation of compositional segregation, and simultaneously unmask the impact of V proportion on the distribution of second phase in W-V binary alloy system. This work provides an innovative approach for obtaining W-V connections with much better performance.

Heating and Cooling Energy Conservation Effects by Green Roof Systems in Relation with Building Location, Usage and Number of Floors

  • Son, Hyeong Min;Park, Dong Yoon;Chang, Seong Ju
    • KIEAE Journal
    • /
    • v.14 no.2
    • /
    • pp.11-19
    • /
    • 2014
  • Building energy consumption takes up almost 25% of the total energy consumption. Therefore, diversified ways, such as improving wall and window insulation, have been considered to reduce building energy consumption. Recently, green roof system has been explored as an effective alternative for dealing with reducing heating and cooling energy, thermal island effect and improving water quality. However, recent studies regarding a green roof system have only focused on building energy reduction without considering the applied usage, location, and story of the green roof system. Therefore, this study pays attention to the heating and cooling energy in relation to the applied usage, location, and story of a green roof system for investigating its impact on energy reduction. The result of simulations show that the reduction in heating energy consumption is higher when applied to Cherwon-gun province which has a continental climate condition, compared to the city of Busan that is distinguished by its warm climate. Cooling energy saving turns out to be higher when the green roof system is applied to Busan in comparison with Cherwon. As for the applied usage or function of the building, residential space acquires the highest heating and cooling energy saving effect rather than commerce, educational or office space because of HVAC's running time based on usage. When it comes to the story of the green roof, both heating and cooling energy saving become the highest when the green roof is applied to single-storied buildings. The reason is that single story building is affected by the ground largely. Generally, the variations of heating energy consumption are larger than the cooling energy consumption. The outcome of the simulations, when a green roof system is applied, indicates that the energy consumption reduction rate is dynamically responding to the applied usage, location, and story. Therefore, these factors should be counted closely for maximizing the reduction of energy consumption through green roof systems.

Computational Investigation of Turbulent Swirling Flows in Gas Turbine Combustors

  • Benim, A.C.;Escudier, M.P.;Stopford, P.J.;Buchanan, E.;Syed, K.J.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.1 no.1
    • /
    • pp.1-9
    • /
    • 2008
  • In the first part of the paper, Computational Fluid Dynamics analysis of the combusting flow within a high-swirl lean premixed gas turbine combustor and over the $1^{st}$ row nozzle guide vanes is presented. In this analysis, the focus of the investigation is the fluid dynamics at the combustor/turbine interface and its impact on the turbine. The predictions show the existence of a highly-rotating vortex core in the combustor, which is in strong interaction with the turbine nozzle guide vanes. This has been observed to be in agreement with the temperature indicated by thermal paint observations. The results suggest that swirling flow vortex core transition phenomena play a very important role in gas turbine combustors with modern lean-premixed dry low emissions technology. As the predictability of vortex core transition phenomena has not yet been investigated sufficiently, a fundamental validation study has been initiated, with the aim of validating the predictive capability of currently-available modelling procedures for turbulent swirling flows near the sub/supercritical vortex core transition. In the second part of the paper, results are presented which analyse such transitional turbulent swirling flows in two different laboratory water test rigs. It has been observed that turbulent swirling flows of interest are dominated by low-frequency transient motion of coherent structures, which cannot be adequately simulated within the framework of steady-state RANS turbulence modelling approaches. It has been found that useful results can be obtained only by modelling strategies which resolve the three-dimensional, transient motion of coherent structures, and do not assume a scalar turbulent viscosity at all scales. These models include RSM based URANS procedures as well as LES and DES approaches.

Correlation and Hysteresis Analysis of Air-Water Temperature in Four Rivers: Preliminary study for water temperature prediction (우리나라 하천의 기온-수온의 상관관계 및 이력현상 분석: 미래 하천수온 변화 예측을 위한 사전검토)

  • An, Ji-Hyuck;Lee, Khil-Ha
    • Journal of Environmental Policy
    • /
    • v.12 no.2
    • /
    • pp.17-32
    • /
    • 2013
  • The potential impact of water temperature on air temperature in response to recent anthropogenic global warming has been noticed. To predict climate, induced change in river aquatic environment, it is necessary to understand the thermal constrains of fish species and the timing of the projected river temperature. As a preliminary study, air-water temperature relationship was analyzed on the basis of the observed data during the time period of 2009-2011 and the number of data corresponds to 873-1083. As a result of analyzing the auto-and cross-correlation coefficient between air-water temperature, high correlation is shown (~0.9). It is also found that the correlation coefficient of air temperature is higher than that of water temperature at the lag time less than approximately 10 days. Observed data was divided into two groups to investigate hysteresis: rising limb and falling limb. For some stations there is strong evidence that hysteresis exist between air-water temperature relationships. Consequently it is recommended that seasonal hysteresis needs to be included in determining an airwater relationship.

  • PDF

Soft Tissue Reconstruction of Complete Circumferential Defects of the Upper Extremity

  • Ng, Zhi Yang;Tan, Shaun Shi Yan;Lellouch, Alexandre Gaston;Cetrulo, Curtis Lisante Jr;Chim, Harvey Wei Ming
    • Archives of Plastic Surgery
    • /
    • v.44 no.2
    • /
    • pp.117-123
    • /
    • 2017
  • Background Upper extremity soft tissue defects with complete circumferential involvement are not common. Coupled with the unique anatomy of the upper extremity, the underlying etiology of such circumferential soft tissue defects represent additional reconstructive challenges that require treatment to be tailored to both the patient and the wound. The aim of this study is to review the various options for soft tissue reconstruction of complete circumferential defects in the upper extremity. Methods A literature review of PubMed and MEDLINE up to December 2016 was performed. The current study focuses on forearm and arm defects from the level at or proximal to the wrist and were assessed based on Tajima's classification (J Trauma 1974). Data reviewed for analysis included patient demographics, causality, defect size, reconstructive technique(s) employed, and postoperative follow-up and functional outcomes (when available). Results In accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines, 14 unique articles were identified for a total of 50 patients (mean=28.1 years). Underlying etiologies varied from extensive thermal or electrical burns to high impact trauma leading to degloving or avulsion, crush injuries, or even occur iatrogenically after tumor extirpation or extensive debridement. Treatment options ranged from the application of negative pressure wound dressings to the opposite end of the spectrum in hand transplantation. Conclusions With the evolution of reconstructive techniques over time, the extent of functional and aesthetic rehabilitation of these complex upper extremity injuries has also improved. The proposed management algorithm comprehensively addresses the inherent challenges associated with these complex cases.

Study on the Performance of a Centrifugal Compressor Using Fluid-Structure Interaction Method (유체-구조 연성해석을 이용한 원심압축기 운전익단간극과 성능 예측)

  • Lee, Horim;Kim, Changhee;Yang, Jangsik;Son, Changmin;Hwang, Yoonjei;Jeong, Jinhee
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.40 no.6
    • /
    • pp.357-363
    • /
    • 2016
  • In this study, we perform a series of aero-thermo-mechanical analyses to predict the running-tip clearance and the effects of impeller deformation on the performance using a centrifugal compressor. During operation, the impeller deformation due to a combination of the centrifugal force, aerodynamic pressure and the thermal load results in a non-uniform tip clearance profile. For the prediction, we employ the one-way fluid-structure interaction (FSI) method using CFX 14.5 and ANSYS. The predicted running tip clearance shows a non-uniform profile over the entire flow passage. In particular, a significant reduction of the tip clearance height occurred at the leading and trailing edges of the impeller. Because of the reduction of the tip clearance, the tip leakage flow decreased by 19.4%. In addition, the polytrophic efficiency under operating conditions increased by 0.72%. These findings confirm that the prediction of the running tip clearance and its impact on compressor performance is an important area that requires further investigation.

Solid State Interfacial Phenomena of High Performance Two Phase Polymer System(I) -Preparation and Characteristics of Liquid Crystalline Polyester and Poly(ε-caprolactam) Alloy- (고기능 고분자 복합재의 고상계면 현상에 대한 연구(I) -액정 Polyester와 Poly(ε-caprolactam) Alloy의 제조와 그 특성)

  • Kang, Doo Whan;Kang, Ho Jong;Jung, Hyo Sung;Lee, Yong Moo
    • Applied Chemistry for Engineering
    • /
    • v.8 no.1
    • /
    • pp.49-58
    • /
    • 1997
  • LCP/PA alloy was prepared by blending poly(${\varepsilon}-caprolactam$) (PA) with liquid crystal polyester, Vectra (LCP) having high elasticity and strength. The alloy prepared amorphous PA with more than 10 parts of thermotropic LCP had poor compatibility. To increase the compatibility of the alloy, compatibilizing agent, poly(glycinylmaleimide-co-methylmetacrylate)[poly(GMI-co-MMA)] copolymer was prepared by copolymerizing N-glycinylmaleimide(GMI) with methylmetacrylate(MMA). And then, it was blended with LCP and PA to produce LCP/PA alloy having an excellent compatibility. The compatibility characteristics of the alloy prepared from LCP and PA using the poly(GMI-co-MMA) was determined by measuring the thermal characteristics of glass transition temperature of nematic LCP, and rheological properties, and also high rate impact and flexual characteristics of the alloy were determined.

  • PDF

Analysis of the Impact of Fire and Explosion Accidents due to LNG Leaks in the LNG Re-gasification Process (LNG 재기화 공정에서 LNG 누출에 따른 화재 및 폭발사고의 피해영향 분석)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.825-833
    • /
    • 2018
  • In this study, one calculated the range of damage to the combustion characteristics according to the composition of LNG and the size of leaking holes, and analyzed the damage effect in case of leakage accidents caused by pipe damage in the re-gasification process for the LNG supply system. In order to confirm the combustion characteristics according to LNG composition, there was no significant difference in the result of risk analysis by LNG-producing areas. However, the higher the methane content of the components, the lower the risk of flash fire, hazardous areas of overpressure due to explosion, and thermal radiation damage caused by jet fire. In addition, one investigated the effect of leakage, holes, and ruptures on the risk range and explosions according to the size of the pipe-leakage hole. Also, the influence of overpressure and the range of damage from radiant heat could be predicted. One confirmed the effect of LNG composition and pipe-leakage size on fire and explosion.

Temperature-dependent development models and phenology of Hydrochara affinis (잔물땡땡이의 온도발육모형과 생물계절)

  • Yoon, Sung-Soo;Kim, Myung-Hyun;Eo, Jinu;Song, Young-Ju
    • Korean Journal of Environmental Biology
    • /
    • v.38 no.2
    • /
    • pp.222-230
    • /
    • 2020
  • Temperature-dependent development models for Hydrochara affinis were built to estimate the ecological parameters as fundamental research for monitoring the impact of climate change on rice paddy ecosystems in South Korea. The models predicted the number of lifecycles of H. affinis using the daily mean temperature data collected from four regions (Cheorwon, Dangjin, Buan, Haenam) in different latitudes. The developmental rate of each life stage linearly increased as the temperature rose from 18℃ to 30℃. The goodness-of-fit did not significantly differ between the models of each life stage. Unlike the optimal temperature, the estimated thermal limits of development were considerably different among the models. The number of generations of H. affinis was predicted to be 3.6 in a high-latitude region (Cheorwon), while the models predicted this species to have 4.3 generations in other regions. The results of this study can be useful to provide essential information for estimating climate change effects on lifecycle variations of H. affinis and studies on biodiversity conservation in rice fields.

Reliability assessment of mica high voltage capacitor through environmental test and accelerated life test (마이카 고전압 커패시터의 환경시험과 가속 수명시험을 통한 신뢰성 평가)

  • Park, Seong Hwan;Ham, Young Jae;Kim, Jeong Seok;Kim, Kyoung Hun;So, Seong Min;Jeon, Min Seok
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.29 no.6
    • /
    • pp.270-275
    • /
    • 2019
  • Mica capacitor is being adopted for high voltage firing unit of guided weapon system because of its superior impact enduring property relative to ceramic capacitor. Reliability of localized mica high voltage capacitors was verified through environmental test like terminal strength test, humidity test, thermal shock test and accelerated life test for application to high voltage firing unit. Failure mode of mica capacitor is a decrease of insulation resistance and its final dielectric breakdown. Main constants of accelerated life model were derived experimentally and voltage constant and activation energy were 5.28 and 0.805 eV respectively. Lifetime of mica capacitor at normal use condition was calculated to be 38.5 years by acceleration factor, 496, and lifetime at accelerated condition and this long lifetime confirmed that mica high voltage capacitor could be applied for firing unit.