References
- Aghdam HR, Y Fathipour, G Radjabi and M Rezapanah. 2009. Temperature -dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol. 38:885-895. https://doi.org/10.1603/022.038.0343
- Archangelsky M. 2004. Higher-level phylogeny of Hydrophilinae (Coleoptera: Hydrophilidae) based on larval, pupal and adult characters. Syst. Entomol. 29:188-214. https://doi.org/10.1111/j.0307-6970.2004.00237.x
- Azrag AG, CW Pirk, AA Yusuf, F Pinard, S Niassy, G Mosomtai and R Babin. 2018. Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PLoS One 13:e0199569. https://doi.org/10.1371/journal.pone.0199569
- Baek HM, DG Kim, MJ Baek, CY Lee, HJ Kang, MC Kim, JS Yoo and YJ Bae. 2014. Predation efficiency and preference of the Hydrophilid Water Beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean J. Environ. Biol. 32:112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
- Boda P, G Horváth, G Kriska, M Blahó and Z Csabai. 2014. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101:385-395. https://doi.org/10.1007/s00114-014-1166-2
- Bonato O, A Lurette, C Vidal and J Fargues. 2007. Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol. Entomol. 32:50-55. https://doi.org/10.1111/j.1365-3032.2006.00540.x
- Briere JF, P Pracros, AY Le Roux and JS Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28:22-29. https://doi.org/10.1093/ee/28.1.22
- Campbell A, B Frazer, N Gilbert, A Gutierrez and M Mackauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438. https://doi.org/10.2307/2402197
- Choi SK, MH Kim, LJ Choe, J Eo and HS Bang. 2016. Prediction of the flight times of Hydrochara affinis and Sternolophus rufipes in paddy fields based on RCP 8.5 scenario. Korean J. Agric. For. Meteorol. 18:16-29. https://doi.org/10.5532/KJAFM.2016.18.1.16
- Damos P and M Savopoulou-Soultani. 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:ID123405.
- Dixon AF, A Honek, P Keil, MAA Kotela, AL Sizling and V Jarosik. 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23:257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
- Eliopoulos PA, DC Kontodimas and GJ Stathas. 2010. Temperature- dependent development of Chilocorus bipustulatus (Coleoptera: Coccinellidae). Environ. Entomol. 39:1352-1358. https://doi.org/10.1603/EN09364
- Elphick CS. 2000. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14:181-191. https://doi.org/10.1046/j.1523-1739.2000.98314.x
- Fujioka M, SD Lee, M Kurechi and H Yoshida. 2010. Bird use of rice fields in Korea and Japan. Waterbirds 33:8-29. https://doi.org/10.1675/063.033.s102
- Gillooly JF and SI Dodson. 2000. The relationship of egg size and incubation temperature to embryonic development time in univoltine and multivoltine aquatic insects. Freshw. Biol. 44:595-604. https://doi.org/10.1046/j.1365-2427.2000.00607.x
- Han MS, HK Nam, KK Kang, M Kim, YE Na, HR Kim and MH Kim. 2013. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32:17-23. https://doi.org/10.5338/KJEA.2013.32.1.17
- Han MS, HS Bang, MH Kim, KK Kang, MP Jung and DB Lee. 2010. Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean J. Environ. Agric. 29:427-433. https://doi.org/10.5338/KJEA.2010.29.4.427
- Han MS, JD Shin, YE Na, NJ Lee, MH Park and SG Kim. 2002. Changes of invertebrate density in rice paddies of different fertilizer managements in demonstration villages of sustainable agriculture. Korean J. Environ. Agric. 21:96-101. https://doi.org/10.5338/KJEA.2002.21.2.096
- Han MS, YE Na, HS Bang, MH Kim, MK Kim, KA Roh and JT Lee. 2007. The fauna of aquatic invertebrates in paddy field. Korean J. Environ. Agric. 26:267-273. https://doi.org/10.5338/KJEA.2007.26.3.267
- Hilsenhoff WL. 1995. Aquatic Hydrophilidae and Hydraenidae of Wisconsin (Coleoptera). 2. Distribution, habitat, life cycle and identification of species of Hydrobiini and Hydrophilini (Hydrophilidae: Hydrophilinae). Great Lakes Entomol. 28:97-126.
- Kadoya T, SI Suda and I Washitani. 2009. Dragonfly crisis in Japan: a likely consequence of recent agricultural habitat degradation. Biol. Conserv. 142:1899-1905. https://doi.org/10.1016/j.biocon.2009.02.033
- Kim JG, YC Choi, JY Choi, HS Sim, HC Park, WT Kim, BD Park, JE Lee, KK Kang and DB Lee. 2007. Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean J. Appl. Entomol. 46:335-341. https://doi.org/10.5656/KSAE.2007.46.3.335
- Kim JO, SH Lee and KS Jang. 2011. Efforts to improve biodiversity in paddy field ecosystem of South Korea. Reintroduction 1:25-30.
- Kim MR, HK Nam, MY Kim, KJ Cho, KK Kang and YE Na. 2013. Status of birds using a rice paddy in South Korea. Korean J. Environ. Agric. 32:155-165. https://doi.org/10.5338/KJEA.2013.32.2.155
- Kontodimas DC, PA Eliopoulos, GJ Stathas and LP Economou. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33:1-11. https://doi.org/10.1603/0046-225X-33.1.1
- Kuwagata T, T Hamasaki and T Watanabe. 2008. Modeling water temperature in a rice paddy for agro-environmental research. Agric. For. Meteorol. 148:1754-1766. https://doi.org/10.1016/j.agrformet.2008.06.011
- Lactin DJ, N Holliday, D Johnson and R Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24:68-75. https://doi.org/10.1093/ee/24.1.68
- Logan, JA, DJ Wollkind, SC Hoyt and LK Tanigoshi. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140. https://doi.org/10.1093/ee/5.6.1133
- Maruyama A, M Nemoto, T Hamasaki, S Ishida and T Kuwagata. 2017. A water temperature simulation model for rice paddies with variable water depths. Water Resour. Res. 53:10065-10084. https://doi.org/10.1002/2017WR021019
- Mwalusepo S, HE Tonnang, ES Massawe, GO Okuku, N Khadioli, T Johansson, PA Calatayud and BP Le Ru. 2015. Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models. PLoS One 10:e0130427. https://doi.org/10.1371/journal.pone.0130427
- Nietschke BS, RD Magarey, DM Borchert, DD Calvin and E Jones. 2007. A developmental database to support insect phenology models. Crop Prot. 26:1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006
- Ohta S and A Kimura. 2007. Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. Agric. For. Meteorol. 147:186-198. https://doi.org/10.1016/j.agrformet.2007.07.009
- Park CG, HY Kim and JH Lee. 2010. Parameter estimation for a temperature -dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 13:145-149. https://doi.org/10.1016/j.aspen.2010.01.005
- Pakulnicka J, P Buczynski, P Dabkowski, E Buczynska, E Stepien, A Szlauer-Lukaszewska and A Zawal. 2016. Development of fauna of water beetles (Coleoptera) in waters bodies of a river valley-habitat factors, landscape and geomorphology. Knowl. Manag. Aquat. Ecosyst. 417:1-21. https://doi.org/10.1051/kmae/2015037
- Rebaudo F and VB Rabhi. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166:607-617. https://doi.org/10.1111/eea.12693
- Rebaudo F, Q Struelens and O Dangles. 2018. Modelling temperature -dependent development rate and phenology in arthropods: The devRate package for R. Methods Ecol. Evol. 9:1144-1150. https://doi.org/10.1111/2041-210X.12935
- Roh G, A Borzée and Y Jang. 2014. Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla Suweonensis, in relation to sympatric H. Japonica. Ecol. Inform. 24:78-84. https://doi.org/10.1016/j.ecoinf.2014.07.009
- Taylor F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117:1-23. https://doi.org/10.1086/283683
- Yapo ML, S Sylla, Y Tuo, BC Atse and P Kouassi. 2018. Composition and distribution of aquatic insect community of a nonstocked pond of Banco National Park (Cote d'Ivoire, Western Africa). J. Environ. Sci. Comp. Sci. Eng. Tech. 7:247-259.
- Ydergaard S, A Enkegaard and HF Brodsgaard. 1997. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 85:177-187. https://doi.org/10.1046/j.1570-7458.1997.00248.x