DOI QR코드

DOI QR Code

Temperature-dependent development models and phenology of Hydrochara affinis

잔물땡땡이의 온도발육모형과 생물계절

  • 윤성수 (국립생태원 생태정보연구실) ;
  • 김명현 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 어진우 (농촌진흥청 국립농업과학원 기후변화생태과) ;
  • 송영주 (농촌진흥청 국립농업과학원 기후변화생태과)
  • Received : 2020.03.12
  • Accepted : 2020.04.27
  • Published : 2020.06.30

Abstract

Temperature-dependent development models for Hydrochara affinis were built to estimate the ecological parameters as fundamental research for monitoring the impact of climate change on rice paddy ecosystems in South Korea. The models predicted the number of lifecycles of H. affinis using the daily mean temperature data collected from four regions (Cheorwon, Dangjin, Buan, Haenam) in different latitudes. The developmental rate of each life stage linearly increased as the temperature rose from 18℃ to 30℃. The goodness-of-fit did not significantly differ between the models of each life stage. Unlike the optimal temperature, the estimated thermal limits of development were considerably different among the models. The number of generations of H. affinis was predicted to be 3.6 in a high-latitude region (Cheorwon), while the models predicted this species to have 4.3 generations in other regions. The results of this study can be useful to provide essential information for estimating climate change effects on lifecycle variations of H. affinis and studies on biodiversity conservation in rice fields.

논 생태계 서식 생물을 장기적으로 모니터링하여 기후변화의 영향을 평가하기 위한 기초 연구로 잔물땡땡이의 발육단계별 온도발육모형을 선정하고 생태적 매개변수(유효적산온도, 발육한계온도, 발육최적온도, 발육최고온도)를 추정하였다. 선정된 온도발육모형을 이용하여 위도별 4 지역(철원, 당진, 부안, 해남)에서 발생하는 잔물땡땡이의 세대 수를 각 지역의 일 평균기온을 사용하여 예측하였다. 실험온도 구간(18~30℃)에서는 모든 성장단계에서, 발육속도가 온도에 따라 선형적으로 증가하였고 모형 사이의 적합성은 유의한 차이가 없었다. 하지만 발육최적온도와 달리 발육한계온도는 모형별로 상당한 차이를 보였다. 잔물땡땡이는 고위도인 철원에서 3.6 세대가 발생하지만 다른 지역에서는 4.3 세대가 발생하는 것으로 예측되었다. 본 연구의 결과는 기후변화에 따른 생물계절 변동 및 논 생태계 생물다양성 보전 연구의 기초자료로 활용될 것으로 보인다.

Keywords

References

  1. Aghdam HR, Y Fathipour, G Radjabi and M Rezapanah. 2009. Temperature -dependent development and temperature thresholds of codling moth (Lepidoptera: Tortricidae) in Iran. Environ. Entomol. 38:885-895. https://doi.org/10.1603/022.038.0343
  2. Archangelsky M. 2004. Higher-level phylogeny of Hydrophilinae (Coleoptera: Hydrophilidae) based on larval, pupal and adult characters. Syst. Entomol. 29:188-214. https://doi.org/10.1111/j.0307-6970.2004.00237.x
  3. Azrag AG, CW Pirk, AA Yusuf, F Pinard, S Niassy, G Mosomtai and R Babin. 2018. Prediction of insect pest distribution as influenced by elevation: Combining field observations and temperature-dependent development models for the coffee stink bug, Antestiopsis thunbergii (Gmelin). PLoS One 13:e0199569. https://doi.org/10.1371/journal.pone.0199569
  4. Baek HM, DG Kim, MJ Baek, CY Lee, HJ Kang, MC Kim, JS Yoo and YJ Bae. 2014. Predation efficiency and preference of the Hydrophilid Water Beetle Hydrochara affinis (Coleoptera: Hydrophilidae) larvae on two mosquitos Culex pipiens molestus and Ochlerotatus togoi under laboratory conditions. Korean J. Environ. Biol. 32:112-117. https://doi.org/10.11626/KJEB.2014.32.2.112
  5. Boda P, G Horváth, G Kriska, M Blahó and Z Csabai. 2014. Phototaxis and polarotaxis hand in hand: night dispersal flight of aquatic insects distracted synergistically by light intensity and reflection polarization. Naturwissenschaften 101:385-395. https://doi.org/10.1007/s00114-014-1166-2
  6. Bonato O, A Lurette, C Vidal and J Fargues. 2007. Modelling temperature-dependent bionomics of Bemisia tabaci (Q-biotype). Physiol. Entomol. 32:50-55. https://doi.org/10.1111/j.1365-3032.2006.00540.x
  7. Briere JF, P Pracros, AY Le Roux and JS Pierre. 1999. A novel rate model of temperature-dependent development for arthropods. Environ. Entomol. 28:22-29. https://doi.org/10.1093/ee/28.1.22
  8. Campbell A, B Frazer, N Gilbert, A Gutierrez and M Mackauer. 1974. Temperature requirements of some aphids and their parasites. J. Appl. Ecol. 11:431-438. https://doi.org/10.2307/2402197
  9. Choi SK, MH Kim, LJ Choe, J Eo and HS Bang. 2016. Prediction of the flight times of Hydrochara affinis and Sternolophus rufipes in paddy fields based on RCP 8.5 scenario. Korean J. Agric. For. Meteorol. 18:16-29. https://doi.org/10.5532/KJAFM.2016.18.1.16
  10. Damos P and M Savopoulou-Soultani. 2012. Temperature-driven models for insect development and vital thermal requirements. Psyche 2012:ID123405.
  11. Dixon AF, A Honek, P Keil, MAA Kotela, AL Sizling and V Jarosik. 2009. Relationship between the minimum and maximum temperature thresholds for development in insects. Funct. Ecol. 23:257-264. https://doi.org/10.1111/j.1365-2435.2008.01489.x
  12. Eliopoulos PA, DC Kontodimas and GJ Stathas. 2010. Temperature- dependent development of Chilocorus bipustulatus (Coleoptera: Coccinellidae). Environ. Entomol. 39:1352-1358. https://doi.org/10.1603/EN09364
  13. Elphick CS. 2000. Functional equivalency between rice fields and seminatural wetland habitats. Conserv. Biol. 14:181-191. https://doi.org/10.1046/j.1523-1739.2000.98314.x
  14. Fujioka M, SD Lee, M Kurechi and H Yoshida. 2010. Bird use of rice fields in Korea and Japan. Waterbirds 33:8-29. https://doi.org/10.1675/063.033.s102
  15. Gillooly JF and SI Dodson. 2000. The relationship of egg size and incubation temperature to embryonic development time in univoltine and multivoltine aquatic insects. Freshw. Biol. 44:595-604. https://doi.org/10.1046/j.1365-2427.2000.00607.x
  16. Han MS, HK Nam, KK Kang, M Kim, YE Na, HR Kim and MH Kim. 2013. Characteristics of benthic invertebrates in organic and conventional paddy field. Korean J. Environ. Agric. 32:17-23. https://doi.org/10.5338/KJEA.2013.32.1.17
  17. Han MS, HS Bang, MH Kim, KK Kang, MP Jung and DB Lee. 2010. Distribution characteristics of water scavenger beetles (Hydrophilidae) in Korean paddy field. Korean J. Environ. Agric. 29:427-433. https://doi.org/10.5338/KJEA.2010.29.4.427
  18. Han MS, JD Shin, YE Na, NJ Lee, MH Park and SG Kim. 2002. Changes of invertebrate density in rice paddies of different fertilizer managements in demonstration villages of sustainable agriculture. Korean J. Environ. Agric. 21:96-101. https://doi.org/10.5338/KJEA.2002.21.2.096
  19. Han MS, YE Na, HS Bang, MH Kim, MK Kim, KA Roh and JT Lee. 2007. The fauna of aquatic invertebrates in paddy field. Korean J. Environ. Agric. 26:267-273. https://doi.org/10.5338/KJEA.2007.26.3.267
  20. Hilsenhoff WL. 1995. Aquatic Hydrophilidae and Hydraenidae of Wisconsin (Coleoptera). 2. Distribution, habitat, life cycle and identification of species of Hydrobiini and Hydrophilini (Hydrophilidae: Hydrophilinae). Great Lakes Entomol. 28:97-126.
  21. Kadoya T, SI Suda and I Washitani. 2009. Dragonfly crisis in Japan: a likely consequence of recent agricultural habitat degradation. Biol. Conserv. 142:1899-1905. https://doi.org/10.1016/j.biocon.2009.02.033
  22. Kim JG, YC Choi, JY Choi, HS Sim, HC Park, WT Kim, BD Park, JE Lee, KK Kang and DB Lee. 2007. Ecological analysis and environmental evaluation of aquatic insects in agricultural ecosystem. Korean J. Appl. Entomol. 46:335-341. https://doi.org/10.5656/KSAE.2007.46.3.335
  23. Kim JO, SH Lee and KS Jang. 2011. Efforts to improve biodiversity in paddy field ecosystem of South Korea. Reintroduction 1:25-30.
  24. Kim MR, HK Nam, MY Kim, KJ Cho, KK Kang and YE Na. 2013. Status of birds using a rice paddy in South Korea. Korean J. Environ. Agric. 32:155-165. https://doi.org/10.5338/KJEA.2013.32.2.155
  25. Kontodimas DC, PA Eliopoulos, GJ Stathas and LP Economou. 2004. Comparative temperature-dependent development of Nephus includens (Kirsch) and Nephus bisignatus (Boheman) (Coleoptera: Coccinellidae) preying on Planococcus citri (Risso) (Homoptera: Pseudococcidae): evaluation of a linear and various nonlinear models using specific criteria. Environ. Entomol. 33:1-11. https://doi.org/10.1603/0046-225X-33.1.1
  26. Kuwagata T, T Hamasaki and T Watanabe. 2008. Modeling water temperature in a rice paddy for agro-environmental research. Agric. For. Meteorol. 148:1754-1766. https://doi.org/10.1016/j.agrformet.2008.06.011
  27. Lactin DJ, N Holliday, D Johnson and R Craigen. 1995. Improved rate model of temperature-dependent development by arthropods. Environ. Entomol. 24:68-75. https://doi.org/10.1093/ee/24.1.68
  28. Logan, JA, DJ Wollkind, SC Hoyt and LK Tanigoshi. 1976. An analytic model for description of temperature dependent rate phenomena in arthropods. Environ. Entomol. 5:1133-1140. https://doi.org/10.1093/ee/5.6.1133
  29. Maruyama A, M Nemoto, T Hamasaki, S Ishida and T Kuwagata. 2017. A water temperature simulation model for rice paddies with variable water depths. Water Resour. Res. 53:10065-10084. https://doi.org/10.1002/2017WR021019
  30. Mwalusepo S, HE Tonnang, ES Massawe, GO Okuku, N Khadioli, T Johansson, PA Calatayud and BP Le Ru. 2015. Predicting the impact of temperature change on the future distribution of maize stem borers and their natural enemies along East African mountain gradients using phenology models. PLoS One 10:e0130427. https://doi.org/10.1371/journal.pone.0130427
  31. Nietschke BS, RD Magarey, DM Borchert, DD Calvin and E Jones. 2007. A developmental database to support insect phenology models. Crop Prot. 26:1444-1448. https://doi.org/10.1016/j.cropro.2006.12.006
  32. Ohta S and A Kimura. 2007. Impacts of climate changes on the temperature of paddy waters and suitable land for rice cultivation in Japan. Agric. For. Meteorol. 147:186-198. https://doi.org/10.1016/j.agrformet.2007.07.009
  33. Park CG, HY Kim and JH Lee. 2010. Parameter estimation for a temperature -dependent development model of Thrips palmi Karny (Thysanoptera: Thripidae). J. Asia-Pac. Entomol. 13:145-149. https://doi.org/10.1016/j.aspen.2010.01.005
  34. Pakulnicka J, P Buczynski, P Dabkowski, E Buczynska, E Stepien, A Szlauer-Lukaszewska and A Zawal. 2016. Development of fauna of water beetles (Coleoptera) in waters bodies of a river valley-habitat factors, landscape and geomorphology. Knowl. Manag. Aquat. Ecosyst. 417:1-21. https://doi.org/10.1051/kmae/2015037
  35. Rebaudo F and VB Rabhi. 2018. Modeling temperature-dependent development rate and phenology in insects: review of major developments, challenges, and future directions. Entomol. Exp. Appl. 166:607-617. https://doi.org/10.1111/eea.12693
  36. Rebaudo F, Q Struelens and O Dangles. 2018. Modelling temperature -dependent development rate and phenology in arthropods: The devRate package for R. Methods Ecol. Evol. 9:1144-1150. https://doi.org/10.1111/2041-210X.12935
  37. Roh G, A Borzée and Y Jang. 2014. Spatiotemporal distributions and habitat characteristics of the endangered treefrog, Hyla Suweonensis, in relation to sympatric H. Japonica. Ecol. Inform. 24:78-84. https://doi.org/10.1016/j.ecoinf.2014.07.009
  38. Taylor F. 1981. Ecology and evolution of physiological time in insects. Am. Nat. 117:1-23. https://doi.org/10.1086/283683
  39. Yapo ML, S Sylla, Y Tuo, BC Atse and P Kouassi. 2018. Composition and distribution of aquatic insect community of a nonstocked pond of Banco National Park (Cote d'Ivoire, Western Africa). J. Environ. Sci. Comp. Sci. Eng. Tech. 7:247-259.
  40. Ydergaard S, A Enkegaard and HF Brodsgaard. 1997. The predatory mite Hypoaspis miles: temperature dependent life table characteristics on a diet of sciarid larvae, Bradysia paupera and B. tritici. Entomol. Exp. Appl. 85:177-187. https://doi.org/10.1046/j.1570-7458.1997.00248.x