• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.024 seconds

The cavitating flow simulation in cryogenic fluid around 3D objects

  • Thai, Quangnha;Lee, Chang-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.264-267
    • /
    • 2010
  • This research focuses on the development of numerical code to deal with compressible two phase flow around three dimensional objects combined with cavitation model suggested by Weishyy et al. with k-e turbulent model. The cryogenic cavitation is carried out by considering the thermodynamic effect on physical properties of cryogenic fluids in physical point of view and implementing the temperature sensitivity in the energy equation of the government equations in numerical point of view, respectively. The formulation has been extensively validated for both liquid nitrogen and liquid hydrogen by simulating the experiments of Hord on hydrofoils. Then, simulations of cavitating turbopump inducers at their design flow rate are presented. Results over a broad range of Nss numbers extending from single-phase flow conditions through the critical head break down point are discussed. In particular, thermal depression effects arising from cavitation in cryogenic fluids are identified and their impact on the suction performance of the inducer quantified.

  • PDF

Comparative study of air gap, direct contact and sweeping gas membrane distillation configurations

  • Loussif, Nizar;Orfi, Jamel
    • Membrane and Water Treatment
    • /
    • v.7 no.1
    • /
    • pp.71-86
    • /
    • 2016
  • The present study deals with a numerical simulation for the transport phenomena in three configurations of Membrane Distillation (Air Gap, Direct Contact and Sweeping Gas Membrane Distillation) usually used for desalination in order to make an objective comparison between them under the same operating conditions. The models are based on the conservation equations for the mass, momentum, energy and species within the feed saline and cooling solutions as well as on the mass and energy balances on the membrane sides. The theoretical model was validated with available data and was found in good agreement. DCMD configuration provided the highest pure water production while SGMD shows the highest thermal efficiency. Process parameters' impact on each configuration are also presented and discussed.

The Effect of an Aggressive Cool-Down Following A Refueling Outage Accident in which a Pressurizer Safety valve is Stuck Open

  • Lim, Ho- Gon;Park, Jin-Hee;Jang, Seung-Cheol
    • Nuclear Engineering and Technology
    • /
    • v.36 no.6
    • /
    • pp.497-511
    • /
    • 2004
  • A PSV (pressurizer safety valve) popping test carried out in the early phases of a refueling outage may trigger a test-induced LOCA(loss of coolant accident) if a PSV fails to fully close and is stuck in a partially open position. According to a KSNP (Korea standard nuclear power plant) low power and shutdown PSA (probabilistic safety assessment), the failure of a high pressure safety injection (HPSI) accompanied by the failure of a PSV to fully close was identified as a dominant accident sequence with a significant impact on low power and shutdown risks (LPSR). In this study, we aim to investigate and verify a new means for mitigating this type of accident using a thermal-hydraulic analysis. In particular, we explore the applicability of an aggressive cool-down combined with operator actions. The results of the various sensitivity studies performed there will help reduce LPSR and improve Refueling outage safety.

Thermal stress analysis for high pressure and temperature pipelines in ultra steam turbine (UST) system

  • Choi, Dae-keon
    • Bulletin of the Society of Naval Architects of Korea
    • /
    • v.52 no.2
    • /
    • pp.19-24
    • /
    • 2015
  • A reliable assessment and analysis of the condition of high pressure and temperature steam pipelines requires defining stress state, which will take into consideration not just the impact of internal pressure and temperature but all applied loads. For that, usage of modeling and numerical methods for calculation and analysis of stress state is essential. The main aim of piping stress analysis is to check the design of piping layout, which will allow simple, efficient and economical piping supports and provide flexibility to the piping system for loads and stresses. The piping stress analysis is carried out using CAESER II software. By using this software we can evaluate stresses, stress ratios, flange condition, support loads, element forces and displacements at each node and points. In this paper, only the maximum and minimum displacement results are tabulated, which is also shown in detail by an example of main steam pipelines of UST Main Engine System [1].

Present Status and Future Prospects of Cold Spraying

  • Gaertner, Frank;Schmidt, Tobias;Kreye, Heinrich
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.236-237
    • /
    • 2006
  • Cold spraying is a fairly new coating technique, which within the last decade attracted serious attention of research groups and spray companies. As compared to thermal spraying, the low process temperatures in cold spraying result in unique coating properties, which promise new applications. Since particles impact with high kinetic energy in the solid state, new concepts to describe coating formation are requested to enable the full potential of this new technology. The present contribution gives a brief review of current models concerning bonding, supplying a description of the most influential spray parameters and consequences for new developments. With respect to spray forming by cold cold spraying, microstructures and thick, further machineable structures are presented.

  • PDF

DEVELOPMENT OF STEP MOTOR AND CONTROL SYSTEM FOR HEAVY EQUIPMENT (중장비 엔진속도제어용 스텝모터 및 제어시스템 개발)

  • Bae, D.J.;Lee, J.I.;Lee, J.I.;Park, H.J.;Kim, J.K.;Hahn, S.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.98-100
    • /
    • 1995
  • This paper deals with development of high torque and high accurate stepping motor and control system which is adopted heavy equipment engine speed control. In the process of development, only pure domestic technics is involved, all the parts are supplied in domestic industries, and successfully accomplished to mass production. In order to confirm product liability, circumferential test,such as vibration test impact test,thermal test,and field test are thoroughly fulfilled.

  • PDF

ELECTRICAL BREAKDOWN INITIATION OF ANODIC FILMS DURING ANODIZING IN MOLTEN BISULPHATE MELT

  • Han, S.H.;Thompson, G.E.
    • Journal of Surface Science and Engineering
    • /
    • v.32 no.3
    • /
    • pp.341-343
    • /
    • 1999
  • The morphology and composition of anodic films, formed on aluminium at various current densities, in the range $1-100{\;}Am^{-2}$, in the molten bisulphate melt at different temperatures (418-498K), have been studied using transmission electron microscopy of ultramicrotomed film sections, and ion beam thinned films. The first sign of incipient breakdown revealed by transmission electron microscopy of stripped films, is always the appearance of dark regions about 1,000 nm in diameter, representing local overgrowth of the film. The breakdown mechanism is closely related to thermal effects, because temperature rises at regions representing local overgrowth in the stripped films were observed at voltages close to the breakdown voltage, likely arising through impact ionization.

  • PDF

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.24-28
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

A study on the fabrication of lightweight composite materials for heat dissipation using CNT and Al powder with injection molding for vehicle (사출성형을 통한 CNT 및 Al Powder를 이용한 방열 및 차량용 경량 복합재료 제작 연구)

  • Leem, Byoung-Ill;Yun, Jae-Woong
    • Design & Manufacturing
    • /
    • v.13 no.3
    • /
    • pp.6-10
    • /
    • 2019
  • In this study, a study was carried out that could effectively produce a heat dissipation effect on plastic materials. Using carbon nanotube (CNT), aluminum powder and plastic, the material properties were tested in 2 cases of compounding ratio. The test sample mold was designed and constructed prior to the experiment. The experiments include tensile strength, elongation rate, flexural strength, flexural elasticity rate, eye-jaw impact strength, gravity and thermal conductivity. Results from 60% and 70% mixture of aluminium to plastic were tested, and a 10% less combined result was a relatively good property. For research purposes, the heat dissipation effect and light weighting obtained a good measure when the combined amount of Al was 60%.

THE EVOLUTION OF ASTRONOMICAL OBSERVATORY DESIGN

  • Castro Tirado, Miguel Angel;Castro-Tirado, Alberto J.
    • Journal of The Korean Astronomical Society
    • /
    • v.52 no.4
    • /
    • pp.99-108
    • /
    • 2019
  • This work addresses the development of the astronomical observatory all through history, from an architectural point of view, as a building in relation to the observing instruments and their functioning as a heterogeneous work center. We focused on 32 observatories (in the period 1259-2007) and carefully analyzed the architectures. Considering the impact of the construction itself or its facilities on the results of the research (thermal or structural stability, poor weather protection, turbulence, etc.), there is little attention paid to theories or studies of the architectural or construction aspects of the observatories. Therefore, this work aims to present a theoretical-critical contribution that, at least, invites the reflection of those involved in the development of astronomical observatories in the future.