• Title/Summary/Keyword: thermal impact

Search Result 824, Processing Time 0.028 seconds

Mechanical Property and Thermal Stability of Epoxy Composites Containing Poly(ether sulfone) (폴리에테르설폰이 도입된 에폭시 복합재의 열 안정성 및 기계적 특성)

  • Lee, Si-Eun;Park, Mi-Seon;Jeong, Euigyung;Lee, Man Young;Lee, Min-Kyung;Lee, Young-Seak
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.426-432
    • /
    • 2015
  • Poly(ether sulfone) (PES) embedded diglycidylether of bisphenol-A (DGEBA) epoxy composites were fabricated for improving its mechanical properties and thermal stability. The mechanical properties such as tensile, flexural and impact strength of the composites changed significantly with the introduction of PES. The value of the fracture toughness of this composite also was increased remarkably about 24%. Thermal stability of PES/epoxy composites also improved 12%, which was calculated with integral procedural decomposition temperature (IPDT). From the differential scanning calorimeter (DSC) result, the curing temperature and curing heat decreased according to the increase of PES contents. These were attributed to the good distribution and the formation of the semi-interpenetrating polymer networks (semi-IPNs) composed of the epoxy network and linear PES.

Ice-slurry Generation of Ice Thermal Energy Storage System using Ultrasonic Vibration (초음파 진동을 이용한 빙축열 시스템의 아이스 슬러리 생성 연구)

  • Byon, Sung-Kwang;Gong, Chun-Su;Kim, Nam Woong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.2
    • /
    • pp.578-584
    • /
    • 2013
  • Ice slurry that is a mixture of fine ice crystals and liquid water is a widely used working fluid in the ice thermal energy storage system due to its flowability and large latent heat of fusion. Generally ice slurry is made from supercooled water. But the excessive supercooling causes the water to freeze even worse to block the pipe. Additionally large degree of supercooling of water degrades the efficiency of the ice thermal energy storage system. Therefore the effective method to control the phase change from supercooled water to ice slurry is needed. In this paper we experimentally studied a novel method to generate the ice slurry from the supercooled water using the ultrasonic vibration. It was found that the cavitation impact of supercooled water by ultrasonic vibration can help the generation of ice slurry.

A Study on the Damage Range According to Leakage Scenarios in Natural Gas Pipeline of LNG Fueled Ship (LNG 추진선의 천연가스 배관에서 누출 시나리오에 따른 피해범위에 관한 연구)

  • Lee, Yoon-Ho
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.4
    • /
    • pp.317-326
    • /
    • 2020
  • In this study, damages caused by flash fire, overpressure, and thermal radiation based on the sizes of leak holes were evaluated using the areal location of hazardous atmospheres when natural gas leaked owing to the damage of pipeline in a LNG fueled ship. In addition, environmental variables (wind speed, atmospheric temperature, and atmospheric stability) and process variables (pipe pressure and pipe length) were classified to analyze the damage impact ranges caused by various scenarios. From the results, the damage range caused by the environmental variables was the largest, followed by overpressure and thermal radiation. Additionally, for the process variables, regardless of the pressure, length, or size of the leak holes, the damage range attributed to flash fire was the most significant, and the damage range was high in the order of overpressure and thermal radiation, similar to the environmental variables. The larger the size of the leak holes, the higher the values of the environmental and process variables, and the higher the damage range caused by jet fire compared to the environmental variables.

The Sensitivity Analysis of Thermal Expansion Breakage of Multi-layer Glazing in Building Envelope (건물 외피에 적용된 복층창의 열팽창 파손에 대한 민감도 분석 연구)

  • Yoon, Jong-Ho;Kim, Seung-Chul;Im, Kyung-Up;Oh, Myeong-Hwan
    • KIEAE Journal
    • /
    • v.14 no.6
    • /
    • pp.93-97
    • /
    • 2014
  • Curtain wall system of office buildings has recently become very common in Korea. As the multi-layer curtain glazing is exposed to outdoor environment, it is very subjected to direct environmental impact. Consequently, breakage and cracks of glazing due to heat expansion is frequently observed. This study explores various causes and aspects for destruction of multi-layer glazing. A sensitivity analysis was performed on the basis that thermal changes causes damage to the multi-layer glazing. Air temperature in air cavity within the multi-layer glazing was examined to find its effect on multi-layer glazing breakage. Analysis showed high deflection to depth ratio of 1:1.8 and that higher the aspect ratio, smaller is the deflection. Allowable pressure showed that the weakest value is for aspect ratio of 1:2.9. Sensitivity analysis by the area of the glazing showed that as area of glazing becomes higher, allowable pressure and deflection-depth ratio becomes smaller. For allowable pressure and allowable deflection-depth within air cavity, the glazing breakage occurred at least $107^{\circ}C$. The results from glazing breakage by thermal factor shows that it is hard to break the glazing with only an increase in air cavity temperature in multi-layer glazing applied in buildings.

Mechanical and Thermal Properties of Epoxy Composites Reinforced Fluorinated Illite and Carbon Nanotube (불소화 일라이트 및 탄소나노튜브 강화 에폭시 복합재의 기계적 및 열적 특성)

  • Lee, Kyeong Min;Lee, Si-Eun;Kim, Min Il;Kim, Hyeong Gi;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.285-290
    • /
    • 2016
  • To improve properties of epoxy composites, surfaces of the illite and carbon nanotube (CNT) were treated by fluorine gas. The fluorinated illite and CNT were then characterized by X-ray photoelectron microscopy (XPS) and the mechanical and thermal properties of their composites were evaluated. The tensile and impact strengths and thermal stability of the composites increased upto about 59%, 18% and 124%, respectively compared to those of the neat epoxy. Improvements of mechanical and thermal properties in the composites were attributed that the fluorination of illite and carbon nanotube helps to enhance the dispersion in epoxy resin and interfacial interaction between them.

Effect of Thermal Aging on Microstructure and Mechanical Properties of China Low-Activation Martensitic Steel at 550℃

  • Wang, Wei;Liu, Shaojun;Xu, Gang;Zhang, Baoren;Huang, Qunying
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.518-524
    • /
    • 2016
  • The thermal aging effects on mechanical properties and microstructures in China low-activation martensitic steel have been tested by aging at $550^{\circ}C$ for 2,000 hours, 4,000 hours, and 10,000 hours. The microstructure was analyzed by scanning and transmission electron microscopy. The results showed that the grain size and martensitic lath increased by about $4{\mu}m$ and $0.3{\mu}m$, respectively, after thermal exposure at $550^{\circ}C$ for 10,000 hours. MX type particles such as TaC precipitated on the matrix and Laves-phase was found on the martensitic lath boundary and grain boundary on aged specimens. The mechanical properties were investigated with tensile and Charpy impact tests. Tensile properties were not seriously affected by aging. Neither yield strength nor ultimate tensile strength changed significantly. However, the ductile-brittle transition temperature of China low-activation martensitic steel increased by $46^{\circ}C$ after aging for 10,000 hours due to precipitation and grain coarsening.

Analysis of Sensitivity and Vulnerability of Endangered Wild Animals to Global Warming (지구 온난화에 따른 국내 멸종위기 야생동물의 민감도 및 취약성 분석)

  • Kim, Jin-Yong;Hong, Seongbum;Shin, Man-Seok
    • Journal of Climate Change Research
    • /
    • v.9 no.3
    • /
    • pp.235-243
    • /
    • 2018
  • Loss of favorable habitats for species due to temperature increase is one of the main concerns of climate change on the ecosystem, and endangered species might be much more sensitive to such unfavorable changes. This study aimed to analyze the impact of future climate change on endangered wild animals in South Korea by investigating thermal sensitivity and vulnerability to temperature increase. We determined thermal sensitivity by testing normality in species distribution according to temperature. Then, we defined the vulnerability when the future temperature range of South Korea completely deviate from the current temperature range of species distribution. We identified 13 species with higher thermal sensitivity. Based on IPCC future scenarios RCP 4.5 and RCP 8.5, the number of species vulnerable to future warming doubled from 3 under RCP4.5 to 7 under the RCP8.5 scenario. The species anticipated to be at risk under RCP 8.5 are flying squirrel (Pteromys volans aluco), ural owl (Pteromys volans aluco), black woodpecker (Dryocopus martius), tawny owl (Strix aluco), watercock (Gallicrex cinerea), schrenck?s bittern (Ixobrychus eurhythmus), and fairy pitta (Pitta nympha). The other 10 species showing very narrow temperature ranges even without normal distributions and out of the future temperature range may also need to be treated as vulnerable species, considering the inevitable observation scarcity of such endangered species.

Hot Firing Test of a Quadrature NEA SSD9103S1 Configuration

  • Ja-Chun, Koo;Hee-Sung, Park;Max, Guba
    • International Journal of Aerospace System Engineering
    • /
    • v.9 no.2
    • /
    • pp.1-9
    • /
    • 2022
  • The NEA release mechanism is used to provide restraint and release functions with low shock for critical deployment operations on solar arrays after launch. The GK3 solar array consists of 2 wings and 6 hold down points per panel. The NEA SSD9103S1 is a part of the GK3 solar array hold-down and release mechanism. Each NEA unit is equipped with two Z-diodes which provide power to a NEA unit connected in series after actuation of the fuse wire. This paper presents the hot firing test results of a quadrature NEA SSD9103S1 configuration. One output powers a maximum of 4 NEA SSD9103S1 units simultaneously. The necessary actuation pulse duration has been determined to meet margin requirement for thermal energy of minimum 4. Actuation thermal energy difference is about 6.6% between each half of two fired serial NEAs. Thermal energy margin at worst case is minimum 5.9 in case of an actuation pulse duration of 500 ms. Two series Zener impedance depend on current applied has been characterized by an additional actuation after all fuse wires are open circuit. Total number of actuation commands to the GK3 NEA unit reduce drastically from 24 in case of single NEA configuration down to 8 in case of parallel and quadrature NEA configurations. It can be accommodated by the existing HP2U Pyro design without any impact.

Heat Dissipation Trends in Semiconductors and Electronic Packaging (반도체 및 전자패키지의 방열기술 동향)

  • S.H. Moon;K.S. Choi;Y.S. Eom;H.G. Yun;J.H. Joo;G.M. Choi;J.H. Shin
    • Electronics and Telecommunications Trends
    • /
    • v.38 no.6
    • /
    • pp.41-51
    • /
    • 2023
  • Heat dissipation technology for semiconductors and electronic packaging has a substantial impact on performance and lifespan, but efficient heat dissipation is currently facing limited improvement. Owing to the high integration density in electronic packaging, heat dissipation components must become thinner and increase their performance. Therefore, heat dissipation materials are being devised considering conductive heat transfer, carbon-based directional thermal conductivity improvements, functional heat dissipation composite materials with added fillers, and liquid-metal thermal interface materials. Additionally, in heat dissipation structure design, 3D printing-based complex heat dissipation fins, packages that expand the heat dissipation area, chip embedded structures that minimize contact thermal resistance, differential scanning calorimetry structures, and through-silicon-via technologies and their replacement technologies are being actively developed. Regarding dry cooling using single-phase and phase-change heat transfer, technologies for improving the vapor chamber performance and structural diversification are being investigated along with the miniaturization of heat pipes and high-performance capillary wicks. Meanwhile, in wet cooling with high heat flux, technologies for designing and manufacturing miniaturized flow paths, heat dissipating materials within flow paths, increasing heat dissipation area, and reducing pressure drops are being developed. We also analyze the development of direct cooling and immersion cooling technologies, which are gradually expanding to achieve near-junction cooling.

Characteristics of Nylon 6/Poly(acrylonitrile-co-styrene-co-acrylic rubber) Blends Containing Compatibilizer (상용화제가 포함된 나일론 6/Poly(acrylonitrile-co-styrene-co-acrylic rubber) 블렌드의 특성)

  • Kim, Lang-Wook;Yoo, Sun-Hwa;Kim, Chang-Keun
    • Polymer(Korea)
    • /
    • v.31 no.1
    • /
    • pp.8-13
    • /
    • 2007
  • To overcome drawbacks of the nylon 6/poly (acrylonitrile-co-butadiene-co-styrene) (ABS) blend, nylon 6 blend with poly (acrylonitrile - co-styrene - co-acrylic rubber) (ASA) which containing poly (butyl acrylate) as a rubber phase in substitute of poly (butadiene) in ABS, was examined. Poly (styrene-co-maleic anhydride) (SMA) containing 25 wt% of maleic anhydride (MA) or poly (styrene- co-acrylo-nitrile-co-maleic anhydride) (SANMA) containing less than 3 wt% MA was used as a compatibilizer to fabricate blends having high impact strength. Changes in the mechanical properties of nylon 6/ASA blend with compatibilizer content were similar with those of nylon 6/ABS blend. Blends haying high impact strength was produced when blends contained more than about 20 wt% rubber. Blends containing SAM or SANMA as a compatibilizer were stayed in a injection molding machine at the molding temperature and afterwards specimens for the examination of the impact strength was prepared. Impact strength of blends containing SMA was decreased with retention time, while that of blends containing SANMA was not changed with retention time.