• Title/Summary/Keyword: thermal front

Search Result 308, Processing Time 0.023 seconds

Reaction Condition Dependency of Propagating Behavior in the Polymerization Reaction by Thermal Front

  • Huh, Do-Sung;Choe, Sang-Joon;Lee, Burm-Jong
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.2
    • /
    • pp.325-329
    • /
    • 2002
  • In this study, the dependency of the behavior of propagating front on the reaction condition in frontal polymerization reaction has been studied. We have used some multifunctional acrylates as a monomer and ammonium persulfate as an initiator for the polymerization reactions. In frontal polymerization, a method of producing polymeric materials via a thermal front that propagates through the unreacted monomer/initiator solution, the behavior of self propagating front shows various dynamic patterns depending on the reaction condition. We have obtained some spin modes of propagating front in the number of 'hot spots' or 'spin heads' by changing the reaction condition. The effect of the reactor tube diameter on the mode of propagating front has also been studied by using some reactor tubes with different size of tube diameter and it has been examined in some detail by adopting an experimental method of two-tubes system.

Analysis of Thermal Distribution inside LCD Monitor by Development of Prediction Formula for Inner Temperature (내부 온도 추정식 개발에 의한 LCD 모니터 내부의 열분포 분석)

  • Oh, S.J.;Ko, H.S.;Chung, D.H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.487-488
    • /
    • 2006
  • In these days, demand of a LCD monitor is remarkably increasing with development of the LCD technology. However, there are thermal problems for improvement of efficiency for the LCD monitor. Thus, this research analyzed thermal problems such as convection and conduction heat transfer characteristics in the LCD monitor using an infrared (IR) camera. Also, the results of the outer side of the front LCD panel using the IR camera have been compared with the results of the inner side of the front panel using T-type thermocouples. The equations have been derived for the temperature distribution of the inner side of the front LCD panel by a multiple regression method including variables for ambient temperature, humidity and temperature differences between the front and back panels of the LCD monitor.

  • PDF

An Experimental Study on Flame and $NO_x$ Emission Characteristics of Front Mixing Premix Combustor ($NO_x$ 선단 예혼합 연소기의 화염 및 $NO_x$ 배출 특성 연구)

  • Shin, Myung-Chul;Kim, Se-Won;Mun, Min-Uk
    • Journal of the Korean Society of Combustion
    • /
    • v.11 no.2
    • /
    • pp.22-27
    • /
    • 2006
  • This experimental study has been mainly motivated to obtain generally applicable design correlation for the front mixing premix combustor. The design concept of the front mixing premix combustor is to minimize thermal $NO_x$ and prompt $NO_x$ formation by maintaining low peak flame temperature, and nearly uniform flame temperature through rapid mixing process near the ignition point. The present experimental results clearly indicate that the front mixing premix combustor yields the $NO_x$ level lower than 43 ppm $NO_x$ emissions and the nearly uniform temperature distribution.

  • PDF

Development of Line Density Index for the Quantification of Oceanic Thermal Fronts (해양의 수온전선 정량화를 위한 선밀도 지수 개발)

  • Cho, Hyun-Woo;Kim, Kye-Hyun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.2
    • /
    • pp.227-238
    • /
    • 2006
  • Line density index(LDI) was developed to quantify a densely isothermal line rate as standard index in the ocean environment. Theoretical background on the LDI development process restricting index range 0 to 100 was described. And validation test was done for the LDI application condition that total line length is not greater than 1/10 of unit area. NOAA SST(Sea Surface Temperature) data were used for the experimental application of LDI in the South Sea of Korea. Using GIS, $0.1^{\circ}C$ isothermal lines were linearized as vector data form SST raster data, and unit area were built as polygon data. For the LDI calculation, spatial overlapping(line in polygon) was implemented. To analyze the effect of unit area size for the LDI distribution, two cases of unit area size were designed and descriptive statistics was calculated including performing normality test. The results showed no change of LDI's essential characteristics such as mean and normality except for the range of value, variance and standard deviation. Accordingly, it was found that complex structure of thermal front and even smaller scale of front width than unit area size could influence on the LDI distribution. Also, correlation analysis performed between LDI and difference of temperature(${\Delta}T^{\circ}C$), and horizontal thermal gradient(${\Delta}T^{\circ}C/km$) on the front was obtained from linear regression model. This obtained value was compared with the results from previous researches. Newly developed LDI can be used to compare the thermal front regions changing spatio-temporally in the ocean environment using absolute index value. It is considered to be significant to analyze the relationship between thermal front and marine environment or front and marine organisms in a quantitative approach described in this study.

  • PDF

The Effects of Thermal Front on Sound Propagation in Shallow Seas of Korea (한국 천해에서 수온전선이 수중음향전파에 미치는 효과)

  • Na, Jung-Yul
    • The Journal of the Acoustical Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.110-116
    • /
    • 1988
  • The thermal front over the shallow coastal seas of Korea during the winter season provides very unique acoustic media such that wave equation is easily separable and the solutions turn out to be very simple and well known. In steady of using the WKB method to solve the radial equation the mode technique have been applied to obtain the solution. The radial propagation is rather weakly influenced by the presence of the thermal front that causes the horizontal variations of the sound speed. The physical description of the sound propagation is also presented in terms of ray tracing.

  • PDF

Natural Cconvection in a Vertical Channel with Thermal Blocks (장방형 발열체가 부착된 채널에서 자연대류 연구)

  • 최용문;박경암
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.2
    • /
    • pp.438-444
    • /
    • 1993
  • The circuit board of an electronic equipment were simulated with a vertical channel which had thermal blocks protruded from one of the channel walls. A rought front plate was made of a circuit board attached with short wires to simulate the back side of a printed circuit board. Natural convection experiments were carried out to study the effects of channel space and rough front plate and to find the suitable characteristic value after the fourth row. The effect of a rough front plate was negligble. There were negligible effects of the channel space on the first and second heaters. Heat transfer coefficients after the third row decreased as the channel space decreased. Heat transfer coefficients were almost constant for larger than 20 mm channel space. A characteristic length was suggested to non-dimensionalize Nu and Ra numbers in a vertical channel with protruded heaters. A correlation was obtained using the new characteristic lengths.

Pile-up of phosphorus emitters using thermal oxidation (열산화법에 의한 phosphorus 에미터 pile-up)

  • Boo, Hyun Pil;Kang, Min Gu;Lee, KyungDong;Lee, Jong-Han;Tark, Sung Ju;Kim, Young Do;Park, Sungeun;Kim, Dongwhan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.122.1-122.1
    • /
    • 2011
  • Phosphorus is known to pile-up at the silicon surface when it is thermally oxidized. A thin layer, about 40nm thick from the silicon surface, is created containing more phosphorus than the bulk of the emitter. This layer has a gaussian profile with the peak at the surface of the silicon. In this study the pile-up effect was studied if this layer can act as a front surface field for solar cells. The effect was also tested if its high dose of phosphorus at the silicon surface can lower the contact resistance with the front metal contact. P-type wafers were first doped with phosphorus to create an n-type emitter. The doping was done using either a furnace or ion implantation. The wafers were then oxidized using dry thermal oxidation. The effect of the pile-up as a front surface field was checked by measuring the minority carrier lifetime using a QSSPC. The contact resistance of the wafers were also measured to see if the pile-up effect can lower the series resistance.

  • PDF

Thermal Analysis of a Motor-Separated Spindle System for High-Speed HMC (모터분리형 초고속 머시닝센터 주축계의 열특성 해석)

  • 김석일;권태균;나상준
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.10a
    • /
    • pp.237-242
    • /
    • 2001
  • This paper presents the thermal characteristics analysis of a high-speed HMC spindle system with angular contact ball bearings, built-in motor, oil-jet lubrication method, oil jacket cooling method, and so on. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution, heat flow and thermal deformation under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

  • PDF

Thermal Characteristics Analysis of a High-Speed Motor-Separated Spindle System Using Oil-Jet Lubrication Method (오일-제트 윤활 방식의 모터 분리형 초고속 주축계의 열 특성 해석)

  • 김석일;김기태
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.1
    • /
    • pp.69-75
    • /
    • 2004
  • This paper presents the thermal characteristics analysis of a high-speed motor-separated spindle system consisted of angular contact ball bearings and built-in motor with oil-jet lubrication. The spindle system is composed of the main spindle and sub-spindle which are mechanically connected by a flexible coupling. The spindles are supported by two front and rear bearings, and the built-in motor is located between the front and rear bearings of the sub-spindle. The thermal analysis model of spindle system is constructed by the finite element method, and the thermal characteristics in the design stage are estimated based on temperature distribution and heat flow under the various testing conditions related to material of bearing ball, spindle speed and coolant temperature.

Assessment of thermal fatigue induced by dryout front oscillation in printed circuit steam generator

  • Kwon, Jin Su;Kim, Doh Hyeon;Shin, Sung Gil;Lee, Jeong Ik;Kim, Sang Ji
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1085-1097
    • /
    • 2022
  • A printed circuit steam generator (PCSG) is being considered as the component for pressurized water reactor (PWR) type small modular reactor (SMR) that can further reduce the physical size of the system. Since a steam generator in many PWR-type SMR generates superheated steam, it is expected that dryout front oscillation can potentially cause thermal fatigue failure due to cyclic thermal stresses induced by the transition in boiling regimes between convective evaporation and film boiling. To investigate the fatigue issue of a PCSG, a reference PCSG is designed in this study first using an in-house PCSG design tool. For the stress analysis, a finite element method analysis model is developed to obtain the temperature and stress fields of the designed PCSG. Fatigue estimation is performed based on ASME Boiler and pressure vessel code to identify the major parameters influencing the fatigue life time originating from the dryout front oscillation. As a result of this study, the limit on the temperature difference between the hot side and cold side fluids is obtained. Moreover, it is found that the heat transfer coefficient of convective evaporation and film boiling regimes play an essential role in the fatigue life cycle as well as the temperature difference.