• Title/Summary/Keyword: thermal equivalent model

Search Result 145, Processing Time 0.024 seconds

Property Comparison of Ru-Zr Alloy Metal Gate Electrode on ZrO2 and SiO2 (ZrO2와 SiO2 절연막에 따른 Ru-Zr 금속 게이트 전극의 특성 비교)

  • Seo, Hyun-Sang;Lee, Jeong-Min;Son, Ki-Min;Hong, Shin-Nam;Lee, In-Gyu;Song, Yo-Seung
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.9
    • /
    • pp.808-812
    • /
    • 2006
  • In this dissertation, Ru-Zr metal gate electrode deposited on two kinds of dielectric were formed for MOS capacitor. Sample co-sputtering method was used as a alloy deposition method. Various atomic composition was achieved when metal film was deposited by controlling sputtering power. To study the characteristics of metal gate electrode, C-V(capacitance-voltage) and I-V(current-voltage) measurements were performed. Work function and equivalent oxide thickness were extracted from C-V curves by using NCSU(North Carolina State University) quantum model. After the annealing at various temperature, thermal/chemical stability was verified by measuring the variation of effective oxide thickness and work function. This dissertation verified that Ru-Zr gate electrodes deposited on $SiO_{2}\;and\;ZrO_{2}$ have compatible work functions for NMOS at the specified atomic composition and this metal alloys are thermally stable. Ru-Zr metal gate electrode deposited on $SiO_{2}\;and\;ZrO_{2}$ exhibit low sheet resistance and this values were varied with temperature. Metal alloy deposited on two kinds of dielectric proposed in this dissertation will be used in company with high-k dielectric replacing polysilicon and will lead improvement of CMOS properties.

The effects of activated cooler power on the transient pressure decay and helium mixing in the PANDA facility

  • Kapulla, R.;Paranjape, S.;Fehlmann, M.;Suter, S.;Doll, U.;Paladino, D.
    • Nuclear Engineering and Technology
    • /
    • v.54 no.6
    • /
    • pp.2311-2320
    • /
    • 2022
  • The main outcomes of the experiments H2P6 performed in the thermal-hydraulics large-scale PANDA facility at PSI in the frame of the OECD/NEA HYMERES-2 project are presented in this article. The experiments of the H2P6 series consists of two PANDA tests characterized by the activation of three (H2P6_1) or one (H2P6_2) cooler(s) in an initially stratified and pressurized containment atmosphere. The initial stratification is defined by a helium-rich region located in the upper part of the vessel and a steam/air atmosphere in the lower part. The activation of the cooler(s) results i) in the condensation of the steam in the vicinity of the cooler(s), ii) the corresponding activation of large scale natural circulation currents in the vessel atmosphere, with the result of iii) the re-distribution and mixing of the Helium stratification initially located in the upper half of the vessel and iv) the continuous pressure decay. The initial helium layer represents hydrogen generated in a postulated severe accident. The main question to be answered by the experiments is whether or not the interaction of the different, localized cooler units would be important for the application of numerical methods. The paper describes the initial and boundary conditions and the experimental results of the H2P6 series with the suggestion of simple scaling laws for both experiments in terms of i) the temperature difference(s) across the cooler(s), ii) the transient steam and helium content and iii) the pressure decay in the vessel. The outcomes of this scaling indicate that the interaction between separate, closely localized units does not play a prominent role for the present experiments. It is therefore reasonable to model several units as one large component with equivalent heat transfer area and total water flow rate.

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

Design and Performance Evaluation of Low-Temperature Vacuum Blackbody System (저온-진공 흑체시스템의 설계 및 성능 평가)

  • Kim, Ghiseok;Chang, Ki Soo;Lee, Sang-Yong;Kim, Geon-Hee;Kim, Dong-Ik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.336-341
    • /
    • 2013
  • In this paper, the design concept of a low-temperature vacuum blackbody was described, and thermophysical model of the blackbody was numerically evaluated. Also the working performance of low-temperature vacuum blackbody was evaluated using infrared camera system. The blackbody system was constructed to operate under high-vacuum conditions ($2.67{\times}10^{-2}$ Pa) to reduce temperature uncertainty, which is caused by vapor condensation at low temperatures usually below 273 K. In addition, both heat sink and heat shield including cold shield were installed around radiator to prevent heat loss from the blackbody. Simplified mathematical model of blackbody radiator was analyzed using modified Stefan-Boltzmann's rule. The infrared radiant performance of the blackbody was evaluated using infrared camera. Based on the results of measurements, and simulation, temperature stability of the low-temperature vacuum blackbody demonstrated that the blackbody system can serve as a highly stable reference source for the calibration of an infrared optical system.

Transient Structural Analysis of Piston and Connecting Rods of Reciprocating Air Compressor Using FEM (FEM을 이용한 왕복동 공기압축기의 피스톤 및 커넥팅로드의 구조해석)

  • Pham, Minh-Ngoc;Yang, Chang-Jo;Kim, Jun-Ho;Kim, Bu-Gi
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.23 no.4
    • /
    • pp.393-399
    • /
    • 2017
  • In a reciprocating compressor, the piston and connecting rod are important parts. Excess mechanical stress on these parts may cause damage, and broken parts are expensive and difficult to replace. Therefore, it is necessary to analyze the mechanical stress affecting durability and longevity. The main purpose of this study was to identify locations of maximum stress on pistons and connecting rods. Based on dynamic calculation of the working process of a specific air compressor, an analysis of piston and connecting rod performance has been completed. A three-dimensional model for the air compressor's pistons and connecting rods was built separately, and FEM analysis of these components was carried out using a numerical method. The pistons were loaded by pressure which was changed according to crankshaft angle without thermal boundary conditions. The simulation results were used to predict and estimate stress concentration as well as the value of this stress on pistons and connecting rods. The maximum equivalent stress calculated are over 190 MPa on pistons and 123 MPa on connecting rods at crank angle $135^{\circ}$ and $225^{\circ}$ but these are under tensile yield strength. Besides, the calculated safety factors of connecting rods and pistons is higher than 1. Moreover, the results obtained can be used to provide manufacturers with references to optimize the design of pistons and connecting rods for reciprocating compressors.