• 제목/요약/키워드: thermal distribution

검색결과 3,042건 처리시간 0.03초

기계적 합금화한 W-Cu 복합분말 소결체의 열물성 평가 (The Evaluation of Thermal Properties for W-Cu Composite Sintered from Mechanically Alloyed Powders)

  • 오낭렴;김대건;석명진;김영환;김영도;문인형
    • 한국분말재료학회지
    • /
    • 제7권3호
    • /
    • pp.154-160
    • /
    • 2000
  • In order to enhance sinterability of W-Cu composites used for heat sink materials, mechanical alloying process where both homogeneous mixing of component powders and fine dispersion of minor phase can be easily attained was employed. Nanostructured W-Cu powders prepared by mechanical alloying showed W grain size ranged of 20-50 nm and were able to be efficiently sintered owing to the fine particle size as well as uniform distribution of Cu phase. The thermal properties such as electrical resistivity, coefficient of thermal expansion and thermal conductivity were evaluated as functions of temperature and Cu content. It was found that the coefficient of thermal expansion could be controlled by changing Cu content. The measured electrical resistivities and thermal diffusivities were also varied with Cu content. The thermal conductivities calculated from the values of resistivities and diffusivities showed similar tendency as a function of temperatures. However, this is in contradiction with thermal conductivities of pure W and Cu which decrease with increasing temperature.

  • PDF

KIERDISH II 태양열 집광시스템의 플럭스밀도 분포 (Flux Density Distribution of the Dish Solar Concentrator (KIERDISH II))

  • 강명철;강용혁;유성연
    • 한국태양에너지학회 논문집
    • /
    • 제24권4호
    • /
    • pp.11-18
    • /
    • 2004
  • A solar concentrator, named KIERDISH II, was built at KIER in order to investigate the feasibility of high temperature solar energy application system. The constructed concentrator is a dish type solar concentrator with a focal length of 4.68m and a diameter of 7.9m. To successfully operate KIERDISH II, optimal design of the absorber is very important and flux density distribution has to be known. The focal flux density distribution on the receiver was measured. We have observed the shape and size of flux images and evaluated percent power within radius. Flux density distribution is usually measured by a CCD(charge coupled device) camera and a radiometer. In this paper we present a flux mapping method to estimate the characteristic features of the flux density distribution in the focal region of solar concentrator. The minimum radius of receiver is found to be 0.15m and approximately 90% of the incident radiation is intercepted by receiver aperture.

난방시 가압식 바닥취출 공조방식의 실내온열환경 평가 (An Estimation on Indoor Thermal Environment by Pressurized Plenum Under Floor Air Conditioning System in Heating)

  • 최은훈;이용호;권영철;황정하
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.92-99
    • /
    • 2010
  • The purpose of this study is to apply pressurized plenum under floor air conditioning system to office areas to understand characteristics of indoor thermal environment based on forms of diffusers. For doing this, the author conducted experiment of module measurement, and based on the results, analyzed indoor temperature distribution and velocity distribution based on direction of diffusion by using Computational Fluid Dynamics(CFD), and estimated the Predicted Mean Vote(PMV) of residents based on forms of diffusers to present the optimal air conditioning of the pressurized plenum under floor air conditioning system in heating. The results of this study are as follows. First, as for forms of diffusers, distributed diffusers rather than conical and grill diffusers were favorable in maintaining $24^{\circ}C$, the established temperature in heating, were active in velocity flowing, and were wide in a radius of diffusion. Second, as for position of pressurizing, the difference between upper and lower temperature was wider in center, lateral, and dispersed pressurizing (in order). As for velocity distribution, the velocity was more increased in lateral, center, and dispersed pressurizing(in order), indicating that dispersed pressurizing maintained uniform thermal environment. Third, as for diffusion direction, mixed direction showed less difference between upper and lower temperature and the difference in velocity between center and lateral part was 0.01m/1, indicating that it maintained uniform thermal environment. Fourth, as for the PMV of residents based on the forms of diffusers, the dispersed type showed(+) values above (0) when applied variably based on the position of diffuser, presenting thermal feeling of "being comfortable" to residents.

온배수 확산분석을 위한 Remote Sensing 활용에 관한 연구 (A Study on Application of Remote Sensing for Thermal Plume Analysis)

  • 유복모;조기성
    • 대한공간정보학회지
    • /
    • 제1권2호
    • /
    • pp.185-194
    • /
    • 1993
  • 원격탐측은 초기에는 자연현상이나 지표대상물의 개략적인 분포와 변화를 추출하는데 사용되어 왔으나 최근에는 식물의 분광특성을 이용한 농업조사, 산림조사나 지하자원탐사, 해양상의 수온 및 해류분포조사, 기상조사 등 많은 분야에 응용되고 있다. 본 연구에서는 이와 같은 원격탐측의 많은 응용분야 중에서 해양으로 배출되는 공장온배수의 확산범위를 조사하기 위하여 지구자원 탐사위성인 LANDSAT-5호에 탑재되어 있는 TM에 의해 얻어진 영상과 지상탐측기인 열적외주사기 Thermo Tracer에 의해 얻어진 열적외 영상을 이용하였다. LANDSAT TM영상의 Band 6은 열적외 Band로서 NASA의 CSFC에서 제공한 변환식 및 사후검정값을 이용하여 Band 6의 gray level값으로부터 해수온도 분포를 추출하였으며, Thermo Tracer의 열적외 영상은 TH1100 Series의 Processing mode를 이용하여 온도분포를 얻었다. 이와 같은 영상을 분석한 결과 근해의 수심이 얕은 지역의 해수온도는 담수온도와 내륙온도의 영향을 크게 받고 있음을 알 수 있었으며, 온배수의 확산범위 및 면적을 시각적 및 정량적으로 나타낼 수 있었다. 또한 열적외선 주사영상을 이용하여 보다 세부적인 확산범위를 제시할 수 있었으며 LANDSAT영상결과와 거의 동일한 결과를 나타냄을 알 수 있다.

  • PDF

태안화력발전소 주변 암반조간대에 서식하는 대형저서동물의 종조성 및 군집구조에 미치는 온배수의 영향 (Thermal Discharge Effects on the Species Composition and Community Structure of Macrobenthos in Rocky Intertidal Zone Around the Taean Thermoelectric Power Plant, Korea)

  • 정윤환;김형준;박흥식
    • Ocean and Polar Research
    • /
    • 제40권2호
    • /
    • pp.59-67
    • /
    • 2018
  • This study was conducted to understand the distribution and changes of macrobenthos on rocky intertidal areas around Taean thermoelectric power plant, Also, the purpose of this study was to produce a base-line data on the changes in water temperature due to the operation of the power plant and to understand its thermal impact on the macrobenthic community on intertidal rocky bottoms. A field survey was seasonally conducted at 3 rocky intertidal sites around the Taean thermal power plant. There was no seasonal difference in the community parameters such as number of species, mean density, biomass and species diversity during the study period. The major dominant species were Chthamalus challenger, Littorina brevicula, Crassostrea gigas. In comparison with previous study, thermal discharge in the study area did not significantly affect the distribution of dominant species. The structure of the macrobenthic community revealed that there were showed 3 different faunal groups depending on the difference in the mean density of major dominant species. The result of SIMPER analyses to determine which species were the main contributors to the differences between each community, C. challenger, Lottia spp. And Mytilus galloprovincialis, etc., revealed that there was showed a significant difference between each group. The abundance of M. galloprovincialis, showed a significant difference between faunal groups.

몬테칼로 코드를 이용한 중수로 Calandria에서의 $(n,\;{\gamma})$ 반응유발 열중성자속분포 계산 (Monte Carlo Calculation of Thermal Neutron Flux Distribution for (n, v) Reaction in Calandria)

  • 김순영;김종경;김교윤
    • Journal of Radiation Protection and Research
    • /
    • 제19권1호
    • /
    • pp.13-22
    • /
    • 1994
  • CANDU 6 중수형 원자로 운전중에 Calandria Shell내에서 발생하는 $(n,\;{\gamma})$ 반응유발 열중성자속분포와 CANDU 6 발전소의 측면 및 하단 차폐구조에서의 방사선 선량률을 계산하기 위하여 몬테칼로 방법을 이용한 MCNP 4.2 코드를 사용하였다. 계산결과, Mainshell, Annular Plate와 Subshell내 의 열중성자속분포는 $10^{11}{\sim}10^{13}\;neutrons/cm^2-sec$로 나타났고, 이는 DOT 4.2 코드의 계산결과와 비교해 볼 때 약간 큰 값들의 분포를 보여주고 있다. 이 계산결과의 응용으로서 작업자 접근가능지역 (Worker Accessible Areas)에서의 감마선량률을 계산해본 결과 설계목표치인 $6{\mu}Sv/h$보다 낮은 값을 주는 것으로 나타났다. $(n,\;{\gamma})$ 반응유발 열중성자속분포에 대한 MCNP 4.2 코드의 계산결과는 CANDU 6형 원자로의 방사선 차폐해석에 중요한 자료로 널리 이용될 수 있을 것이다.

  • PDF

고집광 태양열 시뮬레이터의 광학 특성 평가 (Optical Characterization of a High-Flux Solar Thermal Simulator)

  • 채관교;이현진;윤환기;김종규;강용혁;이성욱
    • 한국태양에너지학회 논문집
    • /
    • 제35권3호
    • /
    • pp.65-71
    • /
    • 2015
  • A solar thermal simulator is suitable for indoor experiments of solar receivers and reactors when solar insolation and weather conditions are not favorable. Moreover, due to the easy control of electric power input, the solar thermal simulator allows the adjustment of power input incident on solar receivers and reactors and thus the implementation of accurate experiments. We manufactured a solar simulator, which is comprised of three sets of a xenon lamp and an elliptical reflector. In order to serve as a test facility, optical characterization of the solar simulator via radiation heat flux measurement is a critical prerequisite. We applied the flux mapping method to measuring the heat flux distribution of the three lamps. We presented the measurement results in terms of the heat flux distribution, the peak heat flux, the power distribution, the maximum power, and the efficiency for electric power conversion into radiation power. Characterization results show that our solar simulator provides the peak heat flux of $3,019kW/m^2$, the maximum power of 16.9 kW, and the conversion efficiency of 45%, additionally with a 10% operation margin for output increase.

316L 스테인리스강 원통 구조물의 열라체팅 변형 시험 및 해석 (Test and Analysis of Thermal Ratcheting Deformation for 316L Stainless Steel Cylindrical Structure)

  • 이형연;김종범;이재한
    • 대한기계학회논문집A
    • /
    • 제26권3호
    • /
    • pp.479-486
    • /
    • 2002
  • In this study, the progressive inelastic deformation, so called, thermal ratchet phenomenon which can occur in high temperature structures of liquid metal reactor was simulated with thermal ratchet structural test facility and 316L stainless steel test cylinder. The thermal ratchet deformation at the reactor baffle cylinder of the liquid metal reactor can occur due to the moving temperature distribution along the axial direction as the sodium free surface moves up and down under the cyclic heat-up and cool-down transients. The ratchet deformation was measured with the laser displacement sensor and LVDTs after cooling the structural specimen which is heated up to 55$0^{\circ}C$ with steep temperature gradients along the axial direction. The temperature distribution of the test cylinder along the axial direction was measured with 28 channels of thermocouples and was used for the ratchet analysis. The thermal ratchet deformation was analyzed with the constitutive equation of nonlinear combined hardening model which was implemented as ABAQUS user subroutine and the analysis results were compared with those of the test. Thermal ratchet load was applied 9 times and the residual displacement after 9 cycles of thermal load was measured to be 1.79mm. The ratcheting deformation shapes obtained by the analysis with the combined hardening model were in reasonable agreement with those of the structural tests.

FPSO 소각탑의 복사열전달 및 열응력 해석에 관한 연구 (Analysis of Radiative Heat Transfer and Thermal Stress in Flaring System of FPSO)

  • 이장현;신종계;노인식
    • 대한조선학회논문집
    • /
    • 제39권1호
    • /
    • pp.61-72
    • /
    • 2002
  • 본 연구는 부유식 해양구조물(FPSO) 소각탑 구조물에 발생하는 온도 분포 및 열응력 해석 기법을 개발하는 것을 목표로 한다. 이를 위하여 소각열에 의하여 소각탑에 발생하는 온도분포를 구하는 과정을 이론화하고 온도분포 해석을 위한 과정을 제시하였다. 그리고 온도 분포가 발생시키는 열응력 해석을 위한 기본 과정을 제시하고 예를 보였다. 온도 분포 해석을 위하여 소각열에 의한 복사열전달 현상에 의한 열전달량, 설계 환경에 의한 대류 열전달량 해석 과정을 정립하였다. 정립된 과정을 근거로 온도 해석을 위한 해석 기법을 개발하였다. 또한 열응력 해석을 위한 해석 과정을 정립하고 그 과정을 근거로 열응력 해석 기법을 개발하였다. 본 연구의 결과는 부유식 해양구조물의 소각탑 열응력 해석 및 설계 과정에 활용될 수 있을 것이다.

온도 모니터링을 위한 광섬유 센서와 온도센서 배열 케이블의 비교 연구 (A Study on the Comparison between an Optical Fiber and a Thermal Sensor Cable for Temperature Monitoring)

  • 김중열;김유성;송윤호
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2006년도 춘계 학술발표회 논문집
    • /
    • pp.1100-1109
    • /
    • 2006
  • In this study, two different technologies which can measure temperature simultaneously at many points are introduced. One is to use a thermal sensor cable that is comprised of addressable thermal sensors connected in parallel within a single cable. The other is to use an optic fiber with Distributed Temperature Sensing (DTS) system. The difference between two technologies can be summarized as follows. A thermal sensor cable has a concept of 'point sensing' that can measure temperature at accurate position of a thermal sensor. So the accuracy and resolution of temperature measurement are up to the ability of the thermal sensor. Whereas optic fiber sensor has a concept of 'distributed sensing' because temperature is measured by ratio of Stokes and anti-Stokes component intensities of Raman backscatter that is generated when laser pulse travels along an optic fiber. It's resolution is determined by measuring distance, measuring time and spatial resolution. The purpose of this study is that application targets of two temperature measurement techniques are checked in technical and economical phases by examining the strength and weakness of them. Considering the functions and characteristics of two techniques, the thermal sensor cable will be suitable to apply to the assessment of groundwater flow, geothermal distribution and grouting efficiency within 300m distance. It is expected that the optic fiber sensor can be widely utilized at various fields (for example: pipe line inspection, tunnel fire detection, power line monitoring etc.) which need an information of temperature distribution over relatively long distance.

  • PDF