• Title/Summary/Keyword: thermal dissociation

Search Result 97, Processing Time 0.188 seconds

Dissociation characteristics and thermal phase changes of Korean limestones (한국 석회석의 열분해특성 및 가열에 의한 상변화에 관한 연구)

  • Han, Ki-Sung;Ahn, Ke-Sang;Choi, Long
    • Journal of the Korean Ceramic Society
    • /
    • v.20 no.1
    • /
    • pp.13-18
    • /
    • 1983
  • The investigations have been carried out to study the characteristics of limestone using in Korean cement industry with prime interests in the dissociation and thermal phase changes of limestone between 90$0^{\circ}C$ and 140$0^{\circ}C$ The range of decomposition temperature of limestone was 840-87$0^{\circ}C$ and it was considered that the temperature was lowered by impurities in the limestone. The more the impurities and the finer the grain size of quartz in limestone the lower temperature was applied in forming $C_2S$ mineral the temperature of about 100$0^{\circ}C$. The major clinker minerals such as $C_3S$, $C_2S$, $C_3A$ and $C_4AF$ were formed in most of limestone when the firing temperature was up to 130$0^{\circ}C$.

  • PDF

Thr Adsorption and Decomposition of NO on a Stepped Pt(111) Surface

  • Lee, S. B.;Kang, D. H.;Park, C. Y.;Kwak, H. T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.2
    • /
    • pp.157-163
    • /
    • 1995
  • The adsorption and decomposition of NO on a stepped Pt(111) surface have been studied using thermal desorption spectroscopy and Auger electron spectroscopy. NO adsorbs molecularly in two different states of the terrace and the step, which are distinguishable in thermal desorption spectra. NO dissociates via a bent species at the step sites on the basis of vibrational spectrum data reported previously. The dissociation of NO is an activation process : the activation energy is estimated to be about 2 kcal/mol. Increase in the NO dissociation with adsorption temperature is explained by a process controlled by diffusion of the dissociated atomic nitrogen from the step to the terrace of the surface. In addition to NO and N2, the desorption peak of N2O is observed. We conclude that the formation of N2O is attributed to surface reaction of NO and N adsorbed on the surface.

Thermal dissociation of excitons bound to neutral acceptors in CdTe single crystal (CdTe 단결정에서 중성 받게에 구속된 엑시톤의 열 해리)

  • 박효열
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.10 no.3
    • /
    • pp.185-188
    • /
    • 2000
  • The dissociation of excitons bounds to neutral accepter in CdTe single crystal was investigated by measurement of temperature dependence of the photoluminescence spectra. The binding energies of CdTe single crystal were determined by PL spectrum at 12K. The free exciton (X) binding energy, the exciton binding energy on neutral donor ($D^{\circ}$, X), and the exciton binding energy on neutral acceptor ($A^{\circ}$, X) were 10 meV, 3.49 meV, and 7.17 meV respectively. From the value of activation energy of ($A^{\circ}$, X), we could show that the dissociation of ($A^{\circ}$, X) is attributed to free exciton.

  • PDF

Structural and Physicochemical Studies on DA-5018, a New Capsaicin Derivative (새로운 Capsaicin 유도체 DA-5018의 구조 및 물리화학적 성질 연구)

  • Kim, Heung-Jae;Lee, Jong-Jin;Lee, Eung-Doo;Shim, Hyun-Joo;Lee, Sang-Deuk;Ok, Kwang-Dae;Kim, Won-Bae;Park, No-Sang
    • Journal of Pharmaceutical Investigation
    • /
    • v.27 no.2
    • /
    • pp.119-123
    • /
    • 1997
  • The physicochemical and structural properties of new capsaicin derivative, DA-5018, were examined. The reference standard of this compound was obtained by the recrystallization. A method for the determination of the dissociation constant of the compound is described. pH-solubility and distribution coefficient were determined by chromatographic method. Fundamental properties on thermal behaviors were investigated by TG, DTA and DSC. Structural analysis based on spectroscopic method coincided with the chemical structure of DA-5018. Approximate dissociation constant of the compound determined by UV spectral method was 9.35. Solubilities and partition coefficients in various pH buffer solution appeared pH-dependency. No crystal transition or further transition was found in the thermal analysis. This compound showed good stability, but pH 13 buffer and acetone made some degradative products.

  • PDF

Mathematical Modeling of Combustion Characteristics in HVOF Thermal Spray Processes(I): Chemical Composition of Combustion Products and Adiabatic Flame Temperature (HVOF 열용사 프로세스에서의 연소특성에 관한 수학적 모델링(I): 연소생성물의 화학조성 및 단열화염온도)

  • Yang, Young-Myung;Kim, Ho-Yeon
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.21-29
    • /
    • 1998
  • Mathematical modeling of combustion characteristics in HVOF thermal spray processes was carried out on the basis of equilibrium chemistry. The main objective of this work was the development of a computation code which allows to determine chemical composition of combustion products, adiabatic flame temperature, thermodynamic and transport properties. The free energy minimization method was employed with the descent Newton-Raphson technique for numerical solution of systems of nonlinear thermochemical equations. Adiabatic flame temperature was calculated by using a Newton#s iterative method incorporating the computation module of chemical composition. The performance of this code was verified by comparing computational results with data obtained by ChemKin code and in the literature. Comparisons between the calculated and measured flame temperatures showed a deviation less than 2%. It was observed that adiabatic flame temperature augments with increase in combustion pressure; the influence was significant in the region of low pressure but becomes weaker and weaker with increase in pressure. Relationships of adiabatic flame temperature, dissociation ratio and combustion pressure were also analyzed.

  • PDF

Influence of Thermal Aging in Change of Crosslink Density and Deformation of Natural Rubber Vulcanizates

  • Choe, Seong Sin
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.628-634
    • /
    • 2000
  • Crosslink is the most important chemistry in a rubber vulcanizate. Degree and type of crosslinks of the vulcanizate determine its physical properties. Change of crosslink density and deformation of a rubber vulcanizate by thermal aging were studied using natural rubber (NR) vulcanizates with various cure systems (conventional, semi-EV, and EV) and different cure times (under-, optimum-, and overture). All the NR vulcanizates were deformed by the thermal aging at 60-100 $^{\circ}C.$ The higher the aging temperature is, the more degree of the deformation is. The undercured NR vulcanizates after the thermal aging were deformed more than the optimumand overcured ones. The NR vulcanizates with the EV cure system were less deformed than those with the conventional and semi-EV cure systems. The deformation of the NR vulcanizates was found to be due to change of the crosslink density of the vulcanizates. The crosslink densities of all the vulcanizates after the extraction of organic materials were also changed by the thermal ging. The sources to change the crosslink densities of the vulcanizates by the thermal aging were found to be dissociation of the existing sulfur crosslink and the formation of new crosslinks by free sulfur, reaction products of curing agents, and pendent sulfide groups.

Geomechanical Model Analysis for the Evaluation of Mechanical Stability of Unconsolidated Sediments during Gas Hydrate Development and Production (가스하이드레이트 개발생산과정에서의 미고결 퇴적층의 역학적 안정성 평가를 위한 지오메카닉스모델 해석)

  • Kim, Hyung-Mok;Rutqvist, Jonny
    • Tunnel and Underground Space
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2014
  • In this study, we simulated both dissociation of gas hydrate and mechanical deformation of hydrate-bearing sedimentary formation using geomechanical model. The geomechanical model analysis consists of two distinct codes of TOUGH+Hydrate and FLAC3D. The model is characterized by the fact that changes of temperature, pressure, saturation and their influence on the consequent evolution of effective stress, stiffness and strength of hydrate-bearing sediments during gas production could be well simulated. We compared the results of simulation for two different production methods, and showed that combination of depressurization and thermal stimulation results in the enhancement of production rate especially at early stage. We also presented that the hydrate dissociation-induced geomechanical deformation in unconsolidated clay is much larger than that in sandstone.

Thermal and Photochemistry of Methyl Iodide on Ice Film Grown on Cu(111)

  • Sohn, Young-Ku;White, John M.
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.7
    • /
    • pp.1470-1474
    • /
    • 2009
  • Thermal and photochemistry of methyl iodide ($CH_3I)\;adsorbed\;on\;D_2O$ ice film on Cu(111) at 100 K were studied using temperature-programmed desorption (TPD) time-of-flight mass spectrometry (TOF-MS), X-ray and ultraviolet photoelectron spectroscopies. On the basis of TPD, multilayer and monolayer $CH_3I$ molecules desorb from $D_2O$ ice layer at 120 and 130 K, respectively. Photo-irradiation at 100 K exhibits dramatic changes in the TPD and I $3d_{5/2}\;XPS\;of\;CH_3I$ on ice film, due to a dramatic dissociation of $CH_3I$. The dissociation is likely activated by solvated electrons transferred from the metal substrate during photo-irradiation. No other photo-initiated reaction products were found within our instrumental detection limit. During photo-irradiation, the $CH_3I$, $CH_3$ and I could be trapped (or solvated) in ice film by rearrangement (and self-diffusion) of water molecules. A newly appeared parent molecular desorption peak at 145 K is attributed to trapped $CH_3I$. In addition, the $CH_3$ and I may diffuse through ice and chemisorb on Cu(111), indicated by TPD and I $d_{5/2}$ XPS taken with photo-irradiation time, respectively. No molecular ejection was found during photo-irradiation at 100 K. The work functions for $CH_3I/Cu(111),\;D_2O/Cu(111)\;and\;CH_3I/D_2$O/Cu(111) were all measured to be about 3.9 eV, 1.0 eV downward shift from that of clean Cu(111).

A Variety of Activation Methods Employed in “Activated-Ion” Electron Capture Dissociation Mass Spectrometry: A Test against Bovine Ubiquitin 7+ Ions

  • Oh, Han-Bin;McLafferty, Fred W.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.3
    • /
    • pp.389-394
    • /
    • 2006
  • Fragmentation efficiencies of various ‘activated-ion’ electron capture dissociation (AI-ECD) methods are compared for a model system of bovine ubiquitin 7+ cations. In AI-ECD studies, sufficient internal energy was given to protein cations prior to ECD application using IR laser radiation, collisions, blackbody radiation, or in-beam collisions, in turn. The added energy was utilized in increasing the population of the precursor ions with less intra-molecular noncovalent bonds or enhancing thermal fluctuations of the protein cations. Removal of noncovalent bonds resulted in extended structures, which are ECD friendly. Under their best conditions, a variety of activation methods showed a similar effectiveness in ECD fragmentation. In terms of the number of fragmented inter-residue bonds, IR laser/blackbody infrared radiation and ‘in-beam’ activation were almost equally efficient with ~70% sequence coverage, while collisions were less productive. In particular, ‘in-beam’ activation showed an excellent effectiveness in characterizing a pre-fractionated single kind of protein species. However, its inherent procedure did not allow for isolation of the protein cations of interest.

Hydroxyapatite Coating on Al2O3 by Hydrothermal Process

  • Ha, Jung-Soo
    • Journal of the Korean Ceramic Society
    • /
    • v.40 no.12
    • /
    • pp.1154-1158
    • /
    • 2003
  • Hydrothermal deposition of hydroxyapatite coatings on $Al_2$O$_3$ substrates was studied using aqueous solutions of Ca(NO$_3$)$_2$ㆍ4$H_2O$ and (NH$_4$)$_2$HPO$_4$ containing EDTA disodium salt as a chelating agent for $Ca^{2+}$. For the precipitation of the coatings the EDTA-Ca$^{2+}$ chelates were dissociated thermally at 20$0^{\circ}C$ or decomposed by oxidation with $H_2O$$_2$ at 9$0^{\circ}C$. Scanning electron microscopy and X-ray diffraction were used to investigate the deposition behavior and the phase of the coatings. Hydroxyapatite coatings were not deposited with the thermal dissociation method, whereas uniform deposition of the coatings (about 0.7 $\mu\textrm{m}$ thickness) was obtained with the oxidative decomposition method. The coatings consisted of fine rod-like hydroxyapatite crystals (hexagonal structure) with 60-80 nm diameters, having some preferred orientation with their length (i.e., the c axis) perpendicular to the substrate.ate.