• Title/Summary/Keyword: thermal degradation temperature

Search Result 580, Processing Time 0.032 seconds

Flow Field Design and Stack Performance Evaluation of the Thin Plate Separator for High Temperature Polymer Electrolyte Membrane Fuel Cell (고온 고분자전해질 연료전지 박판형 분리판의 유로 설계 및 스택 성능 평가)

  • KIM, JI-HONG;KIM, MINJIN;KIM, JINSOO
    • Journal of Hydrogen and New Energy
    • /
    • v.29 no.5
    • /
    • pp.442-449
    • /
    • 2018
  • Research on High temperature polymer electrolyte fuel cell (HT-PEMFC) has actively been conducted all over the world. Since the HT-PEMFC can be operated at a high temperature of $120-180^{\circ}C$ using phosphoric acid-doped polybenzimidazole (PBI) electrolyte membrane, it has considerable advantages over conventional PEMFC in terms of operating conditions and system efficiency. However, If the thermal distribution is not uniform in the stack unit, degradation due to local reaction and deterioration of lifetime are difficult to prevent. The thin plate separator reduces the volume of the fuel cell stack and improves heat transfer, consequently, enhancing the cooling effect. In this paper, a large area flow field of thin plate separator for HT-PEMFC is designed and sub-stack is fabricated. We have studied stack performance evaluation under various operating conditions and it has been verified that the proposed design can achieve acceptable stack performance at a wide operating range.

Influence of the Optimized Process in Rapid Thermal Processing on Solar Cells (RTP Furnace에서 공정과정이 태양전지에 미치는 영향)

  • Lee, Ji-Youn;Lee, Soo-Hong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.169-172
    • /
    • 2004
  • The effect of the process parameters on the stable lifetime in rapid thermal firing(RTF) was investigated in order to optimize the process for the Cz-silicon. The process temperature was varied between $700^{\circ}C\;and\;950^{\circ}C$ while the process time was chosen 1 s and 10 s. At below $850^{\circ}C$ the stable lifetime for 10 s is higher than that for 1 s and increases with increasing by the process temperature. However, at over $850^{\circ}C$ the improved stable lifetime is not dependent on the process time and temperature. On the other hand, two high temperature processes in solar cell fabrics are combined with the optimized process and the non-optimized process. The last process determines the stable lifetime. Also, the degraded stable lifetime could be increased by processing in optimized process. The decreased lifetime can increase using the optimized oxidation process, which is a final process in solar cells. Finally, the optimized and non-optimized processes are applied solar cells.

  • PDF

Measurements of Temperature Rise and Temperature Distribution of Samples by Infrared Radiation (적외선 복사에 의한 시료의 온도상승과 온도분포 측정)

  • Han, Jong-Sung;Kim, Ki-Hoon;Kim, Hoon
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2003.11a
    • /
    • pp.133-137
    • /
    • 2003
  • When a light is projected upon a material, part of its radiation energy is absorbed and the rest is reflected or transmitted according to the nature of the material. The molecules of the substance absorbing a light obtains the radiation energy to the wavelength of the light to make photochemical degradation by ultraviolet ray or thermal reactions like physical damage by infrared ray. The degree of damage by radiation energy varies to the substances of materials, the spectral power distribution of the light source and the duration of irradiation. Because the damage brings about a devaluation of material and once damaged, it is irretrievable, it is necessary to minimize the damage and conserve the native quality of a material by a protective lighting system. A measuring system was set up to measure the temperature rise of each sample by infrared radiation from light sources. And the temperature rise and temperature distribution by various infrared lamps were measured with varying time.

  • PDF

Study on Hygrothermal Degradation and Corrosion Protection of Epoxy Coatings Cured by Different Amine Based Curing Agents

  • Shon, Min-Young;Kwon, Huck-Sang
    • Corrosion Science and Technology
    • /
    • v.9 no.5
    • /
    • pp.201-208
    • /
    • 2010
  • Epoxy coatings cured by different amine based curing agents have been prepared. Atomic force microscopy (AFM) has been used to monitor the surface topology changes of epoxy coatings before and after hygrothermal cyclic test. The glass transition temperature ($T_g$) and coefficient of thermal expansion (CTE) of the epoxy coating were measured by Thermo-mechanical Analysis (TMA). The Electrochemical impedance spectroscopy (EIS) with hygrothermal cyclic test has been introduced to evaluate the corrosion protection of the epoxy coatings. In conclusion, thermal properties of epoxy coatings were in good agreement with the results of corrosion protection of epoxy coated carbon steel obtained result by EIS with hygrothermal cyclic test. The relationship between thermal properties, surface roughness changes and corrosion protection of epoxy coatings are discussed in this study.

An Experimental Study on the Performance of Outdoor Heat Exchanger for Heat Pump Using $CO_{2}$ ($CO_{2}$이용 열펌프의 실외열교환기 성능에 관한 실험적 연구)

  • Chang Young Soo;Lee Min Kyu;Ahn Young San;Kim Young Il
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.2
    • /
    • pp.101-109
    • /
    • 2005
  • The purpose of this study is to investigate the performance of outdoor heat exchanger for heat pump using carbon dioxide. Two types of fin and tube heat exchangers (2 rows for type A and 3 rows for B) are tested. Both heat exchangers have counter-cross flow and 1-circuit arrangement. Test results such as heat transfer rate, pressure drop characteristics and temperature distribution in the heat exchanger are shown with respect to mass flow rate of refrigerant and frontal air velocity For cooling mode, the minimum temperature difference between air and refrigerant of type B is smaller than that of type A by $1^{circ}C$, but the pressure loss of air side is much higher for type B by $29\%$. It is found that a large temperature gradient of carbon dioxide during gas cooling Process Promotes thermal conduction through tube wall and fins which results in degradation of heat transfer performance. For heating mode operation, type B heat exchanger shows higher heat transfer performance compared to type A. However, because pressure loss of refrigerant side of type B is much greater than that of type A, the refrigerant outlet pressure of type B becomes lower than that of type A.

Influences of Bending Temperature on the I$_{c}$ Degradation Behavior of Bi-2223 tapes under Bending

  • Shin Hyung Seop;Dizon John Ryan C.;Katagiri Kazumune;Kuroda Tsuneo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.11-15
    • /
    • 2005
  • The I$_{c}$ degradation behavior of Bi-2223 tapes bent at RT and 77K were investigated using the bending device invented by Goldacker. Test results on fixing the tape at RT and 17K showed no difference. At 17K and RT bending, the critical strain was 0.67 and 0.50$\%$, respectively, for the VAM-l tape. For the AMSC tape, it was 0.94 and 0.88$\%$, respectively. These results show that there is additional residual stress in the superconducting filaments to be bent at 17K which shifts the formation of cracks into smaller bending radii. This was proved by computational analysis based on the mixture rule of composites. For the VAM-l tape, the Ie degradation behavior using the Goldacker type device shifted to higher strain levels at about 0.5$\%$, as compared with the FRP sample holders which have a critical bending strain of about 0.24$\%$. Also, for the externally reinforced AMSC tape, Ie degradation using the Goldacker type device begins at a higher strain level, at 0.88$\%$ as compared with using FRP sample holders, at 0.74$\%$. The difference between both cases can be explained by the tensile' and thermal stresses that the tapes were subjected to during fixing (soldering) when the FRP sample holders were used.

Reliablity of Distributed Feedback Laser Diodes for High-speed Optical Communication Systems (고속 광통신 시스템용 비대칭 분포귀환형 레이져 다이오드의 신뢰성에 관한 연구)

  • Jeon, Su-Chang;Joo, Han-Sung;Yun, Il-Gu
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.05a
    • /
    • pp.96-99
    • /
    • 2005
  • As the demand of internet networks using backbone communication systems recently increased, the researches on the high-speed wideband optical communication systems are required. For high-speed optical communication systems, asymmetric sampled grating distributed feedback laser diodes (DFB-LDs) are developed and the reliability of DFB-LDs is examined. The reliability of DFB-LDs is performed by monitoring I-V and L-I characteristics and two degradation phenomena related to the electrical characteristics of LDs are observed during the life tests. The first degradation phenomenon by increasing the reverse current is considered as a formation of leakage current path enough to prevent lasing operation in lateral blocking layer near active region of lasers. The second degradation phenomenon by decreasing the forward current is considered as activation of non-radiative Auger recombination process by thermal energy and the second degradation phenomenon is recovered after the off-test period at room temperature Eventually, evaluating the reliability of DFB LDs can allow us to improved the manufacturability in high-volume manufacturing.

  • PDF

Flexural Properties and Thermal Stability of Bifunctional/Tetrafunctional Epoxy Blends (2 -관능성 에폭시 수지 블렌드의 굴곡 특성과 열 안전성)

  • Yu, Hui-Yeol;Lee, Jae-Rak;Lee, Jong-Mun
    • Korean Journal of Materials Research
    • /
    • v.4 no.1
    • /
    • pp.75-80
    • /
    • 1994
  • Flexural properties and thermal stability have been studied as a function of blend composition in bifunctional DGERA (diglycidyl ether of hisphenol A)/tetrafunctional TGDDM(tetrag1ycidyl diamino diphenyl methane) cured with DDM(4, 4'-diamino diphenyl methane). The flexural modulus and the glass transition temperature increase with an increase of TGDDM and show discontinuous dependence on blend composition around the composition range of 80/20~60/40(L)GEBA/TGDDM). This can be explained with a structural phase inversion (ductile-to-brittle) in crosslinking networks. With increasing TGDDM, the maximum decomposition temperature(Ts) increases, whereas the activation energy during thermal degradation decreases.

  • PDF

Property Analysis of Solar Selective Coatings (태양 선택흡수막의 특성 분석)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.4
    • /
    • pp.31-38
    • /
    • 2013
  • The chemical composition of the black Cr solar selective coatings electrodeposited were investigated for property analysis by using a XPS(X-ray photoelectron spectroscopy) before and after annealing in air at $300^{\circ}C{\sim}500^{\circ}C$ for 120 hours. Black Cr selective coating exposed by solar radiation for 5 months was compared with annealed sample. In addition, The Cu solar selective coatings were prepared by thermal oxidation method for low temperature application. The samples obtained were characterized by using the optical reflectance measurements by using a spectrometer. Optical properties of oxidized Cu solar coatings were solar absorptance $({\alpha}){\simeq}0.62$ and thermal emittance $({\epsilon}){\simeq}0.41(100^{\circ}C)$. In the as-prepared Cr black selective coating, the surface of the coating was found to have Cr hydroxide and Cr. The Cr hydroxide of the major component was converted to $Cr_2O_3$ or $CrO_3$ form after annealing at $500^{\circ}C$ with the desorption of water molecules. The black Cr selective coating was degraded significantly at temperature of $500^{\circ}C$. The main optical degradation modes of this coating were diffusion of Cu substrate materials.

A Review of EOS Thermal Control Logic for MSC on KOMPSAT-2

  • Heo H.P.;Kong J.P.;Kim Y.S.;Park J.E.;Youn H.S.;Paik H.Y.
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.452-455
    • /
    • 2004
  • MSC (Multi-Spectral Camera) system is a remote sensing instrument to obtain high resolution ground image. EOS (Electro-Optic System) for MSC mainly consists of PMA (Primary Mirror Assembly), SMA (Secondary Mirror Assembly), HSTS (High Stability Telescope Structure) and DFPA (Detector Focal Plane Assembly). High performance of EOS makes it possible for MSC system to provide high resolution and high quality ground images. Temperature of the EOS needs to be controlled to be in a specific range in order not to have any thermal distortion which can cause performance degradation. It is controlled by full redundant CPU based electronics. The validity of thermistor readings can be checked because a few thermistors are installed on each control point on EOS. Various kinds of thermal control logics are used to prevent 'Single Point Failure'. Control logic has a few set of database in order not to be corrupted by SEU (Single Event Upset). Even though the thermal control logic is working automatically, it can also be monitored and controlled by ground-station operator. In this paper, various ways of thermal control logic for EOS in MSC will be presented, which include thermal control mode and logic, redundancy design and status monitoring and reporting scheme.

  • PDF