• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.028 seconds

Properties of MFS capacitors with various gate electrodes using $LiNbO_3$ferroelectric thin film ($LiNbO_3$ 강유전체 박막을 이용한 MFS 커패시터의 게이트 전극 변화에 따른 특성)

  • 정순원;김광호
    • Journal of the Korean Vacuum Society
    • /
    • v.11 no.4
    • /
    • pp.230-234
    • /
    • 2002
  • Metal-ferroelectric-semiconductor(MFS) capacitors by using rapid thermal annealed $LiNbO_3$/Si structures were successfully fabricated and demonstrated nonvolatile memory operations of the MFS capacitors. The C-V characteristics of MFS capacitors showed a hysteresis loop due to the ferroelectric nature of the $LiNbO_3$thin film. The dielectric constant of the $LiNbO_3$film calculated from the capacitance in the accumulation region in the capacitance-voltage(C-V) curve was about 25. The gate leakage current density of MFS capacitor using a platinum electrode showed the least value of $1{\times}10^{-8}\textrm{A/cm}^2$ order at the electric field of 500 kV/cm. The minimum interface trap density around midgap was estimated to be about $10^{11}/cm^2$.eV. The typical measured remnant polarization(2Pr) value was about 1.2 $\mu\textrm{C/cm}^2$, in an applied electric field of $\pm$ 300 kv/cm. The ferroelectric capacitors showed no polarization degradation up to about $10^{10}$ switching cycles when subjected to symmetric bipolar voltage pulse in the 500 kHz.

Characteristics of electrodes using V-Ti based hydrogen storage alloys (V-Ti계 수소저장합금의 전극특성)

  • 김주완;이성만;백홍구
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.7 no.2
    • /
    • pp.284-291
    • /
    • 1997
  • The electrode characteristics of two kinds of metal hydride electrodes using V-Ti (V-rich) based alloy were studied, in which one electrode was prepared by sintering the mixture of V-Ti alloy and Ni powders by a rapid thermal annealing technique and the other one was prepared using V-Ti-Ni ternary alloy, The discharge capacities of all electrodes during the charge-discharge cycling were completely deteriorated within 10 cycles. It appeared that the deterioration of the electrodes was caused by the dissolution of V in the near-surface region into the electrolyte and the formation of $TiO_2$ layer on the alloy particle surface. This degradation mechanism was supported by the facts that V is main hydride forming element and $TiO_2$ has very low electrical conductivity and hydrogen diffusivity.

  • PDF

Practical Application of Sn-3.0Ag-0.5Cu Lead Free Solder in Electronic Production

  • Chae Kyu-Sang;Min Jae-Sang;Kim Ik-Joo;Cho Il-Je
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.1 s.34
    • /
    • pp.65-71
    • /
    • 2005
  • At present, Electronic industries push ahead to eliminate the Pb(Lead) -a hazardous material-from all products. Especially, we have performed to select the optimum standard composition of lead free alloy for the application to products for about 3 years from 2000. These days, we have the chance for applying to the mass-production. This project constructed the system for applying the lead free solders on consumer electronic products, which is one of the major products of the LG Electronics. To select the lead free solders with corresponding to the product features, we have passed through the test and applied with Sn-3.0Ag-0.5Cu alloy system to our products, and for the application to the high melting temperature composition, we secured the thermal resistance of the many parts and substrate and optimized the processing conditions. We have operated the temperature cycling test and the high temperature storage test under the standards to confirm the reliability of the products. On these samples, we considered the consequence of our decision by the operating test. For the long life time of the product, we have operated the temperature cycling test at $-45^{\circ}C\;-\;+125^{\circ}C$, 1 cycle/hour, 1000 cycles. Also we have tested the tin whisker growth about lead free plating on lead finish. We have analyzed with the SEM, EDS and any other equipment for confirming the failure mode at the joint and the tin whisker growth on lead free finish.

  • PDF

Effect of ferrule on the fracture resistance of mandibular premolars with prefabricated posts and cores

  • Kim, Ae-Ra;Lim, Hyun-Pil;Yang, Hong-So;Park, Sang-Won
    • The Journal of Advanced Prosthodontics
    • /
    • v.9 no.5
    • /
    • pp.328-334
    • /
    • 2017
  • PURPOSE. This study evaluated fracture resistance with regard to ferrule lengths and post reinforcement on endodontically treated mandibular premolars incorporating a prefabricated post and resin core. MATERIALS AND METHODS. One hundred extracted mandibular premolars were randomly divided into 5 groups (n=20): intact teeth (NR); endodontically treated teeth (ETT) without post (NP); ETT restored with a prefabricated post with ferrule lengths of either 0 mm (F0), 1 mm (F1), or 2 mm (F2). Prepared teeth were restored with metal crowns. A thermal cycling test was performed for 1,000 cycles. Loading was applied at an angle of 135 degrees to the axis of the tooth using a universal testing machine with a crosshead speed of 2.54 mm/min. Fracture loads were analyzed by one-way ANOVA and Tukey HSD test using a statistical program (${\alpha}=.05$). RESULTS. There were statistical differences in fracture loads among groups (P<.001). The fracture load of F2 ($237.7{\pm}83.4$) was significantly higher than those of NP ($155.6{\pm}74.3N$), F0 ($98.8{\pm}43.3N$), and F1 ($152.8{\pm}78.5N$) (P=.011, P<.001, and P=.008, respectively). CONCLUSION. Fracture resistance of ETT depends on the length of the ferrule, as shown by the significantly increased fracture resistance in the 2 mm ferrule group (F2) compared to the groups with shorter ferrule lengths (F0, F1) and without post (NP).

Frost resistance of porous concrete assuming actual environment (實環境を考慮したポーラスコンクリートの耐凍害性の評価(실제 환경을 고려한 다공질 콘크리트의 내동해성(耐凍害性) 평가))

  • NAKAMURA, Takuro;HORIGUCHI, Takashi;SHIMURA, Kazunori;SUGAWARA, Takashi
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.227-233
    • /
    • 2008
  • Porous concrete has large continuous voids of 20-30 % by volume, and this concrete is attractive as environmental material in Japan i.e. permeable road pavement, river bank protection with vegetation and green roof system which influence thermal environment. It is necessary to confirm the frost resistance when constructing porous concrete structure in cold region. However applicable test method and evaluation criterion of porous concrete has not defined yet. Therefore, the object of this study is to investigate the frost resistance of porous concrete and this investigation attempts to address this concern by comparing 4 kinds of specified freezing and thawing tests methods (JIS A1148 procedure A/B and RILEM CIF/CDF test) in consideration of actual environment. RILEM freeze-thaw tests are different from JIS A1148 freeze-thaw tests, which are widely adopted for evaluating the frost resistance of conventional concrete in Japan, in water absorption, cooling rate, length of freezing and thawing period, and number of freezing and thawing cycles. RILEM CIF test measures internal damage and is primarily applicable for pure frost attack. CDF test is appropriate for freeze-thaw and de-icing salt attack. JIS A1148 procedure A/B showed extremely low frost resistance of porous concrete if the large continuous voids were filled with water and the ice expansion in the large continuous voids set in during cooling. Frost resistance of porous concrete was improved by mixing coarse aggregate (G7) which particle size is smaller and fine aggregate in JIS freezing and thawing tests. RILEM CIF/CDF test showed that freeze-thaw and de-icing resistance of porous concrete was seems to be superior in that of conventional concrete.

  • PDF

Performance of Ru-based Preferential Oxidation Catalyst and Natural Gas Fuel Processing System for 1 kW Class PEMFCs System (Ru계 촉매의 CO 선택적 산화 반응 및 1 kW급 천연가스 연료처리 시스템의 성능 연구)

  • Seo, Yu-Taek;Seo, Dong-Joo;Seo, Young-Seog;Roh, Hyun-Seog;Jeong, Jin-Hyeok;Yoon, Wang-Lai
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.3
    • /
    • pp.293-300
    • /
    • 2006
  • KIER has been developing a Ru-based preferential oxidation catalysts and a novel fuel processing system to provide hydrogen rich gas to residential PEMFCs system. The catalytic activity of Ru-based catalysts was investigated at different Ru loading amount and different support structure. The obtained result indicated that 2 wt% loaded Ru-based catalyst supported on ${\alpha}-Al_2O_3$ showed high activity in low temperature range and suppressed the methanation reaction. The developed prototype fuel processor showed thermal efficiency of 78% as a HHV basis with methane conversion of 92%. CO concentration below 10 ppm in the produced gas is achieved with separate preferential oxidation unit under the condition of $[O_2]/[CO]=2.0$. The partial load operation have been carried out to test the performance of fuel processor from 40% to 80% load, showing stable methane conversion and CO concentration below 10 ppm. The durability test for the daily start-stop and 8 h operation procedure is under investigation and shows no deterioration of its performance after 50 start-stop cycles. In addition to the system design and development.

Properties of Low Operating Voltage MFS Devices Using Ferroelectric $LiNbO_3$ Film ($LiNbO_3$ 강유전체 박막을 이용한 저전압용 MFS 디바이스의 특징)

  • Kim, Kwang-Ho;Jung, Soon-Won;Kim, Chae-Gyu
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.11
    • /
    • pp.27-32
    • /
    • 1999
  • Metal-ferroelectric-semiconductor devices by susing rapid thermal annealed $LiNbO_3/Si$(100) structures were fabricated and demonstrated nonvolatile memory operations. The estimated field-effect electron mobility and transconductance on a linear region of the fabricated FET were about $600cm^2/V{\cdot}s$ and 0.16mS/mm, respectively. The ID-VG characteristics of MFSFET's showed a hysteresis loop due to the ferroelectric nature of the $LiNbO_3 films. The drain current of the on state was more than 4 orders of magnitude larger than the off state current at the same read gate voltage of 0.5V, which means the memory operation of the MFSFET. A write voltage as low as ${\pm}3V$, which is applicable to low power integrated circuits, was used for polarization reversal. The ferroelectric capacitors showed no polarization degradation up to $10^{10}$ switching cycles with the application of symmetric bipolar voltage pulse (peak-to-peak 6V, 50% duty cycle) of 500kHz.

  • PDF

In vitro performance and fracture resistance of novel CAD/CAM ceramic molar crowns loaded on implants and human teeth

  • Preis, Verena;Hahnel, Sebastian;Behr, Michael;Rosentritt, Martin
    • The Journal of Advanced Prosthodontics
    • /
    • v.10 no.4
    • /
    • pp.300-307
    • /
    • 2018
  • PURPOSE. To investigate the fatigue and fracture resistance of computer-aided design and computer-aided manufacturing (CAD/CAM) ceramic molar crowns on dental implants and human teeth. MATERIALS AND METHODS. Molar crowns (n=48; n=8/group) were fabricated of a lithium-disilicate-strengthened lithium aluminosilicate glass ceramic (N). Surfaces were polished (P) or glazed (G). Crowns were tested on human teeth (T) and implant-abutment analogues (I) simulating a chairside (C, crown bonded to abutment) or labside (L, screw channel) procedure for implant groups. Polished/glazed lithium disilicate (E) crowns (n=16) served as reference. Combined thermal cycling and mechanical loading (TC: $3000{\times}5^{\circ}C/3000{\times}55^{\circ}C$; ML: $1.2{\time}10^6$ cycles, 50 N) with antagonistic human molars (groups T) and steatite spheres (groups I) was performed under a chewing simulator. TCML crowns were then analyzed for failures (optical microscopy, SEM) and fracture force was determined. Data were statistically analyzed (Kolmogorow-Smirnov, one-way-ANOVA, post-hoc Bonferroni, ${\alpha}=.05$). RESULTS. All crowns survived TCML and showed small traces of wear. In human teeth groups, fracture forces of N crowns varied between $1214{\pm}293N$ (NPT) and $1324{\pm}498N$ (NGT), differing significantly ($P{\leq}.003$) from the polished reference EPT ($2044{\pm}302N$). Fracture forces in implant groups varied between $934{\pm}154N$ (NGI_L) and $1782{\pm}153N$ (NPI_C), providing higher values for the respective chairside crowns. Differences between polishing and glazing were not significant ($P{\geq}.066$) between crowns of identical materials and abutment support. CONCLUSION. Fracture resistance was influenced by the ceramic material, and partly by the tooth or implant situation and the clinical procedure (chairside/labside). Type of surface finish (polishing/glazing) had no significant influence. Clinical survival of the new glass ceramic may be comparable to lithium disilicate.

Fabrication of Mechanical fatigue flawed Specimen and Evaluation of Flaw Size (기계적 피로결함 시험편 제조 및 결함 크기 평가)

  • Hong, Jae-Keun;Kim, Woo-Sung;Son, Young-Ho;Park, Ban-Uk
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.23 no.1
    • /
    • pp.38-44
    • /
    • 2003
  • Performance demonstration with real flawed specimens has been strongly required for nondestructive evaluation of safety class components in nuclear power plant. Mechanical or thermal fatigue crack and intergranular stress corrosion cracking could be occured in the in-service nuclear power plant and mechanical fatigue crack was selected to study in this paper. Specimen was designed to produce mechanical fatigue flaw under tensile stress. The number of cycles and the level of stress were controlled to obtain the desired flaw roughness. After the accurate physical measurement of the flaw size and location, fracture surface was seal-welded in place to ensure the designed location and site. The remaining weld groove was then filled by using gas-tungsten are welding(GTAW) and flux-cored arc welding(FCAW). Results of radio graphic and ultrasonic testing showed that fatigue cracks were consistent with the designed size and location in the final specimens.

A Study on Chemical Resistance of Cement Mortar Blended with Thermally Activated Diatomite containing Heavy Metals form EAF Dust (EAF Dust사의 중금속을 함침한 활성 규조토가 혼합된 시멘트 모르터의 내화학성에 관한 연구)

  • 류한길;임남웅;박종옥
    • Magazine of the Korea Concrete Institute
    • /
    • v.9 no.1
    • /
    • pp.143-151
    • /
    • 1997
  • Chemical resistance of the cement mortar containing the Thermally Activated Diaomite(TAD) and H.M.(Heavy Metals) has been studied. The H.M.. extracted from EAF(Electrica1 Arc Furnace) Dust. were saturated with diatomite. The diatomite was then thermally activated at $750{\circ}C$ for 30minutes and powdeled. The powder was mixed with a portland cement on a weight basis from 0%. 2.5%. 5.0%. 10%. 20%. The optimum mixture. after those mixtures were subjected to compressive strength(7 and 28days) and leaching bchaviour of H.M.. was tested for its experiment on Wet/Dry cycles and chemical resistance(e.q. imrncrsion in 5%(Conc.) of H2S04, CaC12 and hlgSO4. It was shown that the cement, mortar containing 10% of' P.D. gave a rise to the remarkable increase in compressive strength. The compressive strength was generally decrease beyond the addition of 10% of P.D. The maximum $496kgf/cm^2$ of 28days compressive strength was acheiveti when 10% of P.D. was added to the cement mortar.