• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.03 seconds

Enhancement of Electrochemical Activity of Ni-rich LiNi0.8Mn0.1Co0.1O2 by Precisely Controlled Al2O3 Nanocoatings via Atomic Layer Deposition

  • Ramasamy, Hari Vignesh;Sinha, Soumyadeep;Park, Jooyeon;Gong, Minkyung;Aravindan, Vanchiappan;Heo, Jaeyeong;Lee, Yun-Sung
    • Journal of Electrochemical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.196-205
    • /
    • 2019
  • Ni-rich layered oxides $Li(Ni_xCo_yMn_z)O_2$ (x + y + z = 1) have been extensively studied in recent times owing to their high capacity and low cost and can possibly replace $LiCoO_2$ in the near future. However, these layered oxides suffer from problems related to the capacity fading, thermal stability, and safety at high voltages. In this study, we use surface coating as a strategy to improve the thermal stability at higher voltages. The uniform and conformal $Al_2O_3$ coating on prefabricated electrodes using atomic layer deposition significantly prevented surface degradation over prolonged cycling. Initial capacity of 190, 199, 188 and $166mAh\;g^{-1}$ is obtained for pristine, 2, 5 and 10 cycles of ALD coated samples at 0.2C and maintains 145, 158, 151 and $130mAh\;g^{-1}$ for high current rate of 2C in room temperature. The two-cycle $Al_2O_3$ modified cathode retained 75% of its capacity after 500 cycles at 5C with 0.05% capacity decay per cycle, compared with 46.5% retention for a pristine electrode, at an elevated temperature. Despite the insulating nature of the $Al_2O_3$ coating, a thin layer is sufficient to improve the capacity retention at a high temperature. The $Al_2O_3$ coating can prevent the detrimental surface reactions at a high temperature. Thus, the morphology of the active material is well-maintained even after extensive cycling, whereas the bare electrode undergoes severe degradation.

Simulation of HFC organic Rankine cycles for geothermal power generation (지열발전을 위한 HFC 유기랭킨 사이클의 시뮬레이션)

  • Baik, Young-Jin;Kim, Min-sung;Chang, Ki-Chang;Yoon, Hyung-Kee;Lee, Young-Soo;Ra, Ho-Sang
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.569-572
    • /
    • 2009
  • In this study, HFC ORCs (Organic Rankine Cycles) are investigated for a low-temperature geothermal power generation by a simulation method. A steady-state simulation model is developed to analyze and optimize cycle's performance. The model contains a turbine, a pump, an expansion valve and heat exchangers. The turbine and pump are modelled by an isentropic efficiency. Simulations were carried out for the given heat source and sink inlet temperatures, and given flow rate that is based on the typical power plant thermal-capacitance-rate ratio. 3 HFC fluids are considered as a candidate for a working fluid of low-temperature ORCs. In this study, all optimized HFC ORCs are shown to yield almost the same performance in terms of power for a low-temperature heat source of about $100^{\circ}C$.

  • PDF

High Exchange Coupling Field and Thermal Stability of Antiferromagnetic Alloy NiMn Spin Valve Films

  • Lee, N. I.;J. H. Yi;Lee, G. Y.;Kim, M. Y.;J. R. Rhee;Lee, S. S.;D. G. Hwang;Park, C. M.
    • Journal of Magnetics
    • /
    • v.5 no.2
    • /
    • pp.50-54
    • /
    • 2000
  • NiMn-pinned spin valve films consisting of a layered glass/NiFe/Co/Cu/Co/NiFe/NiMn/Ta stack were made by do magnetron sputtering. After deposition, the structure was annealed in a series of cycles each including three hours at $220^\circ C, 2\times10^{-6}$ Torr, in a field of 350 Oe, to create an ordered antiferromagnetic structure in the NiMn layer and produce a strong unidirectional pinning field in the pinned magnetic layer, Optimum spin valve properties were obtained after seven annealing cycles, or 21 hours at $220^\circ C$, and were : MR ratio 1%, exchange coupling field 620 Oe, and coercivity of pinned layer 250 Oe. The exchange coupling field remained constant up to an operating temperature of $175^\circ C$, and the blocking temperature was about $380^\circ C$.

  • PDF

A technology State of Accelerating Degradation and Life Estimation on the Traction Motor for Railway Rolling Stock (철도차량 견인전동기의 가속열화수명평가 기술현황)

  • Wang, Jong-Bae;Kim, Ki-Jun;Choi, Young-Chan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.10a
    • /
    • pp.25-28
    • /
    • 2000
  • In this paper, the technology for accelerating degradation & life estimation on the traction motor was introduced with the stator form-winding sample coils of the 200 Class insulation system The accelerative degradation was performed in 10 cycles, which were composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, condition diagnosis test such as insulation resistance & polarization index, capacitance & dielectric loss and partial discharge properties were investigated in the temperature range of $20{\sim}160^{\circ}C$. Relationship between degradation conditions and diagnosis results were analyzed to find an dominative degradation factor at the end-life point

  • PDF

Anisotropic continuum damage analysis of thin-walled pressure vessels under cyclic thermo-mechanical loading

  • Surmiri, Azam;Nayebi, Ali;Rokhgireh, Hojjatollah;Varvani-Farahani, Ahmad
    • Structural Engineering and Mechanics
    • /
    • v.75 no.1
    • /
    • pp.101-108
    • /
    • 2020
  • The present study intends to analyze damage in thin-walled steel cylinders undergoing constant internal pressure and thermal cycles through use of anisotropic continuum damage mechanics (CDM) model coupled with nonlinear kinematic hardening rule of Chaboche. Materials damage in each direction was defined based on plastic strain and its direction. Stress and strain distribution over wall-thickness was described based on the CDM model and the return mapping algorithm was employed based on the consistency condition. Plastic zone expansion across the wall thickness of cylinders was noticeably affected with change in internal pressure and temperature gradients. Expansion of plastic zone over wall-thickness at inner and outer surfaces and their boundaries demarking elastic and plastic regions was attributed to the magnitude of damage induced over thermomechanical cycles on the thin-walled samples tested at various pressure stresses.

Hafnium Oxide Nano-Film Deposited on Poly-Si by Atomic Layer Deposition

  • Wei, Hung-Wen;Ting, Hung-Che;Chang, Chung-Shu
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.496-498
    • /
    • 2005
  • We reported that high dielectric hafnium oxide nano-film deposited by thermal atomic layer deposition on the poly-silicon film (poly-Si). The poly -Si film was produced by plasma enhanced chemical vapor deposition and excimer laser annealing. We used the hafniu m chloride ($HfCl_4$) and water as the precursors and analyzed the hafnium oxide film by transmission electron microscope and secondary ion mass spectrometer. Hafnium oxide produced by the ALD method showed very good coverage on the rough surface of poly-Si film. While deposited with 200 cycles, these hafnium oxide films revealed a relatively smooth surface and good uniformity, but the cumulative roughness produced by the incomplete reaction was apparent when the amount of deposition cycle increased to 600 cycles.

  • PDF

Thermally/Dynamically Stable Superhydrophobic ZnO Nanoparticles on Various Substrates

  • Lee, M.K.;Kwak, G.J.;Yong, K.J.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.360-360
    • /
    • 2011
  • We demonstrated the fabrication method of superhydrophobic nanocoating through a facile spin-coating and the chemical modification. The resulting coating showed a tremendous water repellency with a static water contact angle (CA) of 158$^{\circ}$ and a hysteresis of 1$^{\circ}$. The number of ZnO nanoparticle (NP) coating cycles affected on the surface roughness, which is key role for superhydrophobic surface, and thus the CA can be modulated by changing the ZnO NP coating cycles. The CA can be controlled by changing the carbon length of Self-Assembled Monolayers(SAM). This simple ZnO coating is substrate-independent including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below 250$^{\circ}C$ and under dynamic conditions.

  • PDF

Chemically Modified Superhydrophobic Zinc Oxide nanoparticle surface

  • Lee, Mi-Gyeong;Gwak, Geun-Jae;Yong, Gi-Jung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.448-448
    • /
    • 2011
  • We investigated the fabrication method of superhydrophobic nanocoating prepared by a simple spin-coating and the chemisorption of fatty acid. The resulting coating showed a tremendous water repellency (static water contact angle = $154^{\circ}$) and the water contact angle can be modulated by changing the number of deposition cycles of ZnO and the carbon length of Self-Assembled Monolayers (SAM). Varying the number of deposition cycles of ZnO controlled the surface roughness, and affected to the superhydrophobicity. This simple coating method can be universally applicable to any substrates including flexible surfaces, papers and cotton fabrics, which can effectively be used in various potential applications. We also observed the thermal and dynamic stabilities of SAM on ZnO nanoparticles. The superhydrophobicic surface maintained its superhydrophobic properties below $250^{\circ}C$ and under dynamic conditions.

  • PDF

Study on the Nanoscale Behavior of ALD Pt Nanoparticles at Elevated Temperature (ALD Pt 나노입자의 고온 거동에 대한 연구)

  • An, Jihwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.8
    • /
    • pp.691-695
    • /
    • 2016
  • This paper covers the investigation of the microscale behavior of Pt nanostrucures fabricated by atomic layer deposition (ALD) at elevated temperature. Nanoparticles are fabricated at up to 70 ALD cycles, while congruent porous nanostructures are observed at > 90 ALD cycles. The areal density of the ALD Pt nanostructure on top of the SiO2 substrate was as high as 98% even after annealing at $450^{\circ}C$ for 1hr. The sheet resistance of the ALD Pt nanostructure dramatically increased when the areal density of the nanostructure decreased below 85 - 89% due to coarsening at elevated temperature.

A Study on the Complex Accelerating Degradation and Condition Diagnosis of Traction Motor for Electric Railway (전기철도용 견인전동기의 복합가속열화 상태진단에 관한 연구)

  • 왕종배
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.1
    • /
    • pp.93-101
    • /
    • 2002
  • In this study, the stator form-winding sample coils based on silicone resin and polyimide were made for fault prediction and reliability estimation on the C-Class(200$\^{C}$ ) insulation system of traction motors. The complex accelerative degradation was periodically performed during 10 cycles, which was composed of thermal stress, fast rising surge voltage, vibration, water immersion and overvoltage applying. After aging of 10 cycles, the condition diagnosis test such as insulation resistance '||'&'||' polarization index, capacitance '||'&'||' dielectric loss and partial discharge properties were investigated in the temperature range of 20 ∼ 160$\^{C}$. Relationship among condition diagnosis tests was analyzed to find a dominative degradation factor and an insulation state at end-life point.