• Title/Summary/Keyword: thermal cycles

Search Result 498, Processing Time 0.037 seconds

Thermal Energy Capacity of Concrete Blocks Subjected to High-Temperature Thermal Cycling (열사이클을 적용한 고온 조건 콘크리트 블록의 열용량 특성)

  • Yang, In-Hwan;Park, Ji-Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.571-580
    • /
    • 2020
  • In this study, an experimental study on storage media for thermal energy storage system was conducted. For thermal energy storage medium, concrete has excellent thermal and mechanical properties and also has various advantages due to its low cost. In addition, the ultra-high strength concrete reinforced by steel fibers exhibits excellent durability against exposure to high temperatures due to its high toughness and high strength characteristics. Moreover, the high thermal conductivity of steel fibers has an advantageous effect on heat storage and heat dissipation. Therefore, to investigate the temperature distribution characteristics of ultra-high-strength concrete, concrete blocks were fabricated and a heating test was performed by applying high-temperature thermal cycles. The heat transfer pipe was buried in the center of the concrete block for heat transfer by heat fluid flow. In order to explore the temperature distribution characteristics according to different shapes of the heat transfer pipe, a round pipe and a longitudinal fin pipe were used. The temperature distribution at the differnent thermal cycles were analyzed, and the thermal energy and the cumulated thermal energy over time were calculated and analyzed for comparison based on test results.

A Fatigue Analysis of Thermal Shock Test in Brake Disc Material for Railway (철도차량 제동디스크 소재 열충격 실험에 대한 피로해석)

  • Lim, Choong-Hwan;Goo, Byeong-Choon
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.615-620
    • /
    • 2010
  • During braking of railway vehicles the repetitive thermal shock leads to thermal cracks on disc surface, and the lifetime of brake disc is dependent on the number of trimming works for removing these thermal cracks. Many tries for development of high heat resistant brake disc to extend the disc life and to warrant reliable braking performance has been continued. In present study, we carry out the computational fatigue analysis for thermal fatigue test in three candidate materials which were made to develop new high heat resistant material. Using FEM, we simulate thermal fatigue test in three candidate materials and conventional disc material. We then estimate the number of cycle to thermal crack initiation based on data from mechanical fatigue tests, and the results are compared with each material. For each material, the correction factor for $N_{f-40}$ which is the number of cycles when crack over $40{\mu}m$ was observed in thermal fatigue test is decided. From this study, we can verify the performance of thermal fatigue test system and suggest a qualitatively comparative method for heat resistance by FEM analysis of thermal shocking phenomenon.

  • PDF

Test methodology of acceleration life test on feeder cable assembly (Feeder Cable Assembly의 가속수명시험법 개발)

  • Han, Hyun Kak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.8
    • /
    • pp.62-68
    • /
    • 2016
  • The feeder cable assembly is an automotive part used for telecommunication. If it malfunctions, the control and safety of the automobile can be put at risk. ALT (Accelerated Life Testing) is a testing process for products in which they are subjected to conditions (stress, strain, temperatures, etc.) in excess of their normal service parameters in an attempt to uncover faults and potential modes of failure in a short amount of time. Failure is caused by defects in the design, process, quality, or application of the part, and these defects are the underlying causes of failure or which initiate a process leading to failure. Thermal shock occurs when a thermal gradient causes different parts of an object to expand by different amounts. Thermal shock testing is performed to determine the ability of parts and components to withstand sudden changes in temperature. In this research, the main causes of failure of the feeder cable assembly were snapping, shorting and electro-pressure resistance failure. Using the Coffin-Manson model for ALT, the normal conditions were from Tmax = $80^{\circ}C$ to Tmin = $-40^{\circ}C$, the accelerated testing conditions were from Tmax = $120^{\circ}C$ to Tmin = $-60^{\circ}C$, the AF (Acceleration Factor) was 2.25 and the testing time was reduced from 1,000 cycles to 444 cycles. Using the Bxlife test, the number of samples was 5, the required life was B0.04%.10years, in the acceleration condition, 747 cycles were obtained. After the thermal shock test under different conditions, the feeder cable assembly was examined by a network analyzer and compared with the Weibull distribution modulus parameter. The results obtained showed good results in acceleration life test mode. For the same reliability rate, the testing time was decreased by a quarter using ALT.

Thermal Shock Fatigue Influence on Mechanical Property Behavior of PBT Resin Embedded by Glass Fibers and Thermal Conductive Particles (유리섬유와 열전도성 첨가제가 함유된 PBT 수지의 기계적 물성거동에 미치는 열충격피로의 영향)

  • Kim, Ki-Soo;Choi, Nak-Sam;Park, Sang-Dae
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.83-89
    • /
    • 2014
  • The purpose of this study is to improve the strength and thermal conductivity of polybutylene terephthalate (PBT) by embedding various additives. Specimens were prepared using PBT pellets embedded with glass fibers (GF) and boron nitride (BN) powders. The test results showed that tensile strength decreased, and thermal conductivity increased with increasing BN contents. with thermal shock cycles conducted, unfilled PBT showed a considerable decrease in failure strain and strength, whereas strength and thermal conductivity of glass fiber and BN particle-embedded PBT had little differeces. With increasing BN, the thermal conductivity of PBT composites was highly improved.

Effects of Cr Content and Volume Fraction of δ-Ferrite on Thermal Cycling Fatigue Properties of Overlay Welded Heat-Resistant 12%Cr Stainless Steels (내열용 오버레이 12%Cr계 스테인레스강의 열피로 특성에 미치는 Cr 함량과 델타-페라이트의 영향)

  • Jung, J.Y.
    • Transactions of Materials Processing
    • /
    • v.26 no.6
    • /
    • pp.356-364
    • /
    • 2017
  • In this study, submerged arc cladded Fe-Cr-Ni-Mo-CuWNbV-C stainless steels containing various Cr contents between 11.2 wt.% and 16.7 wt.% were prepared with fixed C content at about 0.14 wt.%. Using these alloys, changes in microstructure, tensile property, and thermal fatigue property were investigated. Phase fraction of delta-ferrite was increased gradually with increasing Cr content. However, tensile strength, hardness, and thermal fatigue resistance appeared to be decreased. When the microstructure of delta-ferrite was observed, it was revealed that the mesh structure retained up to about 15% Cr content. Although thermal fatigue resistance was almost the same for Cr contents between 11.0 and 14.5 wt.%, it was significantly decreased at higher Cr contents. This was evident from mean value of crack lengths of 10 largest ones. Evaluation of thermal fatigue resistance on alloys with various Cr contents revealed the following important results. First, the reproducibility of ranking test was excellent regardless of the number of cycles. Second, thermal fatigue resistance was increased in proportion to true tensile fracture strength values of overlay materials. Finally, the number of thermal fatigue cracks per unit length was increased with increasing true tensile fracture strength.

BOND STRENGTH BETWEEN COBALT-CHROMIUM ALLOY AND DENTURE BASE RESIN ACCORDING TO ADHESIVE PRIMERS (금속표면처리제에 따른 코발트-크롬 합금과 의치상용 레진의 결합강도)

  • Park, Jong-Il;Kwon, Ju-Hong;Lee, Hae-Hyeung;Cho, Hay-Won
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.38 no.2
    • /
    • pp.160-168
    • /
    • 2000
  • This study evaluated the effects of four adhesive metal primers on the shear bond strength of a heat curing denture base resin(Lucitone 199) to cobalt-chromium alloy(Biosil-f). The adhesive metal primers were Cesead Opaque Primer, Metal Primer, MR Bond, and Super-Bond liquid. The metal surface primed or nonprimed was filled with the heat-curing methyl methacrylate resin. The specimens were stored in water at $37^{\circ}C$ for 24 hours and the alternately immersed in water bath at $5^{\circ}C\;and\;55^{\circ}C$ for up to 2,000 thermal cycles. Shear bond strengths were measured using UTM at a crosshead speed of 0.5mm/min. Failure surface were examined under magnifying glasses. All the primers examined improved the shear bond strength between denture base resin and cobalt-chromium alloy compared with nonprimed specimens before thermal cycling. The bond strength of Cesead Opaque Primer was greatest. And after 2,000 thermal cycles, the bond strengths between resin and cobalt-chromium alloy were decreased but the difference between thermal cycling 0 and 2,000 at Cesead Opaque primer and Metal Primer were not significant. This study indicated that Cesead Opaque Primer & Metal Primer is effective primers to obtain higher bond strength between heat cured denture base resin and cobalt-chromium alloy.

  • PDF

Cyclic Structural Characteristics of Thermal Bridge Breaker Systems embedded in Reinforced Concrete Slabs (벽-슬래브 접합부에 매립된 열교차단장치의 반복하중에 대한 거동특성 평가)

  • Shin, Dong-Hyeon;Oh, Moung-Ho;Kim, Young-Ho;Kim, Hyung-Joon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.5
    • /
    • pp.511-521
    • /
    • 2015
  • The thermal bridge occurring in a building influences its thermal performance and durability. The domestic typical multi-unit residential buildings suffer thermal losses resulting from thermal bridges of the balcony slab. To minimize the thermal loss between inside and outside of the balcony slab, thermal bridge breaker(TBB) systems have been developed and applied in building construction. Although thermal bridge breaker systems for reinforced concrete(RC) wall-slab joints can improve the thermal performance of a building, it is necessary to verify the structural performance of TBB systems whether they provide proper resistance for cyclic loading. In order to investigate the structural characteristics of TBB systems embedded in RC slabs, cyclic tests of wall-slab joints were performed by applying two reversed cycles at each up to 30 cycles. The test results show that the RC slabs embedding TBBS systems can present excellent structural performance and the maximum moment capacity, energy dissipation capacity and ductility of TBBs systems are enhanced compared to those of the typical RC slabs.

Advanced LWIR Thermal Imaging System with a Large Zoom Optics (줌 광학계를 이용한 원적외선 열상장비의 설계 및 제작)

  • Hong, Seok-Min;Kim, Hyun-Sook
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.4
    • /
    • pp.354-360
    • /
    • 2005
  • A high performance LWIR(long wavelength infra red) zoom thermal imaging sensor using $480{\times}6$ HgCdTe(MCT) linear detector has been developed by ADD Korea. The optical system consists of zoom telescope having large objective about 190 mm diameter and optically well corrected scanning system. The zoom ratio of the telescope is 3: 1 and its magnification change is performed by moving two lens groups. And also these moving groups are used for athermalization of the system. It is certain that the zoom sensor can be used in wide operating temperature range without any degradation of the system performance. Especially, the sensor image can be displayed with the HDTV(high definition television) format of which aspect ratio is 16:9. In case of HDTV format, the scanning system is able to display 620,000 pixels. This function can make wider horizontal field of view without any loss of performance than the normal TV format image. The MRTD(minimum resolvable temperature difference) of the LWIR thermal imaging sensor shows good results below 0.04 K at spatial frequency 2 cycles/mrad and 0.23 K at spatial frequency 8 cycles/mrad at the narrow field of view.

Effect of theRehydration Cycles on the Quality Changes of Retorted Sea Cucumber (StichopusJaponicus) During Storage (재수화 반복횟수를 달리한 해삼 병조림의 저장기간에 따른 품질변화 특성)

  • Kim, Yoon Sung;Yoon, Won Byong
    • Food Engineering Progress
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2017
  • Quality changes of dried sea cucumber (Stichopusjaponicus) after applying a cyclic rehydration and retorting process were investigated during 4 weeks of storage. The length, volume, and weight of dried sea cucumber increased significantly as the number of rehydration cycles increased. Sea cucumber (SC) was bottled in the glass jar and a retort thermal process ($121.1^{\circ}C$, 0.15 MPa) was applied. The total thermal processing time (TTT) was 24 min based on the temperature at the cold point. The size and texture of retorted SC were significantly changed until the first week of storage. However, regardless of the number of rehydration cycles, the size and texture of samples at different rehydration cycles showed no significant difference during the whole storage. The length, volume, weight, rehydration ratio ($R_R$), hardness, and chewiness at the maximum degree of swelling during rehydration of dried SC were estimated as 100.86 mm, 38.62 mL, 41.05 g, 6.39 of $R_R$, $249.19g_f$, and 4.05 mJ, respectively.

On-orbit Thermal Behavior of KOMPSAT Liquid-Monopropellant Hydrazine($N_2$H$_4$) Propulsion System

  • 김정수;최환석;한조영
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2000.04a
    • /
    • pp.6-6
    • /
    • 2000
  • On-orbit thermal behavior of KOMPSAT (Korea Multi-purpose Satellite) propulsion system employing hydrazine (N$_2$H$_4$) liquid monopropellant is addressed. Thermal control performance to prevent propellant freezing in spacecraft-operational orbit was verified by flight telemetry data obtained during LEOP (Launch and Early Operation Phase). Results are depicted in terms of temperature history during several orbits selected and are compared with acceptable temperature ranges of system components. Cyclic behavior of temperature is reduced into duty cycles of the avionics heaters and subsequently converted into the electrical power required to keep away from propellant freezing. Temperature of each component which was achieved under on-ground thermal-balanced condition of spacecraft, is presented for comparison with the flight data, additionally.

  • PDF