• 제목/요약/키워드: thermal conductivities

검색결과 327건 처리시간 0.02초

냉간 단조용 SCM420 강의 ?칭 시 열전달 예측모델 개발 (Development of Heat Transfer Predicting Model for Cold forging Steel(SCM420) During Quenching Process)

  • 진민호;장지웅;김정민;강성수
    • 소성∙가공
    • /
    • 제13권5호
    • /
    • pp.441-448
    • /
    • 2004
  • Heat treatment is one of the critical manufacturing processes that determine the quality of a product. This paper presents experimental and analytical results for the quench of a ring gear in stagnant oil. The goal of this study is to develop heat transfer predicting model in an overall analysis of the quenching process, Thermal conductivities which are dependant on temperatures and convection coefficients which are obtained by inverse method are used to develop the accurate heat transfer model. The results of heat transfer model have a good agreement with experimental results.

발열 전도체가 존재하는 밀폐계 내부의 자연대류 현상에 대한 수치적 연구 (Numerical Simulation of Natural Convection in Horizontal Enclosure with Heat-Generating Conducting Body)

  • 이재룡;하만영
    • 대한기계학회논문집B
    • /
    • 제29권4호
    • /
    • pp.441-452
    • /
    • 2005
  • The physical model considered here is a horizontal layer of fluid heated below and cold above with heat-generating conducting body placed at the center of the layer. The dimensionless thermal conductivities of body considered in the present study are 0.01, 1 and 150. The dimensionless temperature difference ratios considered are 0.25, 2.5 and 25. Two-dimensional solution for unsteady natural convection is obtained using an accurate and efficient Chebyshev spectral methodology for variety of Rayleigh number from $10^{3}\;to\;10^{6}.$ Multi-domain technique is used to handle square- shaped heat-generating conducting body. The results for the case of conducting body with heat generation are also compared to those without heat generation.

선형열원법에 의한 지중유효열전도도와 보어홀 전열저항 해석 (Analysis of Effective Soil Thermal Conductivities and Borehole Thermal Resistances with a Line Source Method)

  • 이세균;우정선;노정근
    • 한국태양에너지학회 논문집
    • /
    • 제30권4호
    • /
    • pp.71-78
    • /
    • 2010
  • Investigation of the effective soil thermal conductivity(k) is the first step in designing the ground loop heat exchanger(borehole) of a geothermal heat pump system. The line source method is required by New and Renewable Energy Center of Korea Energy Management Corporation in analyzing data obtained from thermal response tests. Another important factor in designing the ground loop heat exchanger is the borehole thermal resistance($R_b$). There are two methods to evaluate $R_b$ : one is to use a line source method, and the other is to use a shape factor of the borehole. In this study, we demonstrated that the line source method produces better results than the shape factor method in evaluating $R_b$. This is because the borehole thermal resistance evaluated with the line source method characteristically reduces the temperature differences between an actual and a theoretical thermal behaviors of the borehole. Evaluation of $R_b$ requires soil volumetric heat capacity. However, the effect of the soil volumetric heat capacity on the borehole thermal resistance is very small. Therefore, it is possible to use a generally accepted average value of soil volumetric heat capacity($=2MJ/m^3{\cdot}K$) in the analysis. In this work, it is also shown that an acceptable range of the initial ignoring time should be in the range of 8~16hrs. Thus, a mean value of 12 hrs is recommended.

합금원소 첨가에 따른 Ag 피복 Bi-2223 초전도 선재의 열전도도 측정 및 특성평가 (The Effects of Alloying-Element Additions to Ag Sheath on Thermal Conductivity and Properties of Bi-2223 Superconductor Tapes)

  • 주진호;장석헌;김정호;임준형;김규태;지봉기
    • 한국전기전자재료학회논문지
    • /
    • 제16권7호
    • /
    • pp.627-633
    • /
    • 2003
  • The effects of alloying-element additions to Ag sheath on thermal conductivity and mechanical properties of Bi-2223 superconductor tapes have been evaluated. In order to evaluate the effects of sheath alloys and their configuration on the properties of tape, various combinations of Ag and Ag alloys were selected as the inner and outer sheath. Thermal conductivity of the tapes was evaluated by using thermal integral method at 10 ∼120 K. It was observed that the addition of Mg, Sb, and Au to Ag sheath significantly decreased the thermal conductivity at low temperature probably due to the alloying effect. Specifically, the thermal conductivity of AgMg, AgSb, and AgAu at 40 K were 411.4, 142.3, and 109.7 W/(m·K), respectly, which is about 2∼9 times lower than that of Ag (1004.6 W/(m·K)). In addition, the thermal conductivity of alloy-sheathed tape was significantly dependent on their thermal conductivities of constituent sheath materials. The mechanical properties of alloy-sheathed tapes were also evaluated. Yield strength and tensile strength were improved but workability decreased for alloy-sheathed tapes.

이중관형 지중열교환기 구성에 따른 현장 열성능 평가 (Evaluation on in-situ Thermal Performance of Coaxial-type Ground Heat Exchanger with Different Configurations)

  • 이석재;정현석;오광근;박상우;최항석
    • 한국지열·수열에너지학회논문집
    • /
    • 제15권4호
    • /
    • pp.8-15
    • /
    • 2019
  • In order to design coaxial-type Ground Heat Exchangers (GHEXs) efficiently, the effect of components (i.e, heat exchange pipe and grouting material) on the thermal performance of coaxial-type GHEXs should be identified in advance. In this paper, three coaxial-type GHEXs with different configurations were constructed in a test bed. Then, the effect of heat exchange pipes and grouting materials on the thermal performance of coaxial-type GHEXs was investigated by performing in-situ thermal response tests (TRTs) and thermal performance tests (TPTs). In the TRTs, the effective thermal conductivities of the coaxial-type GHEXs with concrete grouting and STS pipes were improved by 6.15 and 22.7%, respectively compared to those of bentonite grouting and HDPE pipes. Additionally, in the TPTs, the use of concrete grouting and STS pipes in the coaxial-type GHEXs enhanced the in-situ thermal performance by 15 and 33.8%, respectively.

두부의 전열물성 및 유효열전도도의 추정 2. 대두단상질의 고유열전도도 측정과 두부의 유효열전도도의 추정 (Thermophysical Properties of the Soybean Curd and Prediction of its Thermal Conductivity 2. The 'intrinsic' thermal conductivity of soybean protein and prediction of the thermal conductivity of soybean curd)

  • 공재열
    • 한국수산과학회지
    • /
    • 제15권3호
    • /
    • pp.219-225
    • /
    • 1982
  • 1) 2성분계 도지두부의 유효열전도도($\lambda_e$)를 $0\sim20^{\circ}C$$-5\sim-20^{\circ}C$의 범위내에서 측정한 결과, 수분함양의 증감에 따라 $\lambda_e$값도 증감했으며, 동결점이상의 온도대에서는 온도의 상승과 함께 $\lambda_e$값도 커지고, 동결점 이하에서는 온도의 하강과 함께 $\lambda_e$값이 커졌다. 2) 3성분계 두부의 유효열전도는 수분함양이 증가함에 따라 $\lambda_e$값은 커져가나 지질의 함양이 증가함에 따라 $\lambda_e$값은 작아졌다. $\lambda_e$값의 온도의존성은 2성분계도지두부의 경우와 유사했다. 3)대대단백질의 고유열전도도는 미동결상태에서 $\lambda_p=0.300[W/m{\bullet}k](0\sim-20^{\circ}C)$이고, 동결상태에서 $\lambda_p=0.488[W/m{\bullet}k](-5\sim-20^{\circ}C)$였으며 이들은 실험온도 범위내에서 온도의존성을 나타내지 않았다. 4) 대두단상질의 고유열전도도의 추정치 $\lambda_p=0.300$$\lambda_p=0.488$의 타당성을 지질의 함양이 상이한 2종류의 3성분계 두부에 적용한 결과, 실측치와 계산치는 잘 일치했다.

  • PDF

Effects of Silicone Surfactant on the Cell Size and Thermal Conductivity of Rigid Polyurethane Foams by Environmentally Friendly Blowing Agents

  • Han, Mi-Sun;Choi, Seok-Jin;Kim, Ji-Mun;Kim, Youn-Hee;Kim, Woo-Nyon;Lee, Heon-Sang;Sung, Joon-Yong
    • Macromolecular Research
    • /
    • 제17권1호
    • /
    • pp.44-50
    • /
    • 2009
  • Rigid polyurethane foams (PUF)s were synthesized with environmentally friendly blowing agents such as a cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only for four different silicone surfactants having different silicone/polyether ratios. An attempt was made to reduce the thermal conductivities of the PUF samples by varying the concentration and the silicone/polyether ratio of the various silicone surfactants. The scanning electron microscopy (SEM) results indicated an optimum concentration of the silicone surfactant of about 1.5 to 2.5 phpp for various surfactants to reduce the cell size and lower the thermal conductivity. The silicone surfactant having a higher silicone/polymer ratio showed a smaller cell size and, therefore, demonstrated the lower thermal conductivity of the PUF samples. From the relation between the thermal conductivity and the cell size of the PUF samples, the smaller cell size improved the thermal insulation property of the rigid PUF for both the PUF samples blown by the cyclopentane/distilled water (10.0/1.0, pphp) mixture and distilled water only. If the blowing agent is fixed, then the cell size is an important factor to decrease the thermal conductivity of the PUF samples. These results indicated that rigid PUF samples having lower thermal conductivity can be obtained by choosing a silicone surfactant containing a higher silicone/polyether ratio, as well as an optimum content of the surfactant.

Measurement of the Thermal Conductivity of a Polycrystalline Diamond Thin Film via Light Source Thermal Analysis

  • Kim, Hojun;Kim, Daeyoon;Lee, Nagyeong;Lee, Yurim;Kim, Kwangbae;Song, Ohsung
    • 한국재료학회지
    • /
    • 제31권12호
    • /
    • pp.665-671
    • /
    • 2021
  • A 1.8 ㎛ thick polycrystalline diamond (PCD) thin film layer is prepared on a Si(100) substrate using hot-filament chemical vapor deposition. Thereafter, its thermal conductivity is measured using the conventional laser flash analysis (LFA) method, a LaserPIT-M2 instrument, and the newly proposed light source thermal analysis (LSTA) method. The LSTA method measures the thermal conductivity of the prepared PCD thin film layer using an ultraviolet (UV) lamp with a wavelength of 395 nm as the heat source and a thermocouple installed at a specific distance. In addition, the microstructure and quality of the prepared PCD thin films are evaluated using an optical microscope, a field emission scanning electron microscope, and a micro-Raman spectroscope. The LFA, LaserPIT-M2, and LSTA determine the thermal conductivities of the PCD thin films, which are 1.7, 1430, and 213.43 W/(m·K), respectively, indicating that the LFA method and LaserPIT-M2 are prone to errors. Considering the grain size of PCD, we conclude that the LSTA method is the most reliable one for determining the thermal conductivity of the fabricated PCD thin film layers. Therefore, the proposed LSTA method presents significant potential for the accurate and reliable measurement of the thermal conductivity of PCD thin films.

경기도, 강원도, 충청도 일대의 암석 열물성 특성 연구 (A Study on Thermal Properties of Rocks from Gyeonggi-do Gangwon-do, Chungchung-do, Korea)

  • 박정민;김형찬;이영민;송무영
    • 자원환경지질
    • /
    • 제40권6호
    • /
    • pp.761-769
    • /
    • 2007
  • 경기도, 강원도, 충청도 일대에서 화성암, 변성암, 퇴적암의 총 712개의 암석을 채취하여 열물성을 측정하였다. 측정 결과로 화성암의 평균 열전도도는 3.58W/m-K, 변성암은 4.16W/m-K, 퇴적암은 4.53W/m-K이다. 우리나라의 경우 화강암과 편마암이 주를 이루고 있는데 이에 대한 열물성 값을 보면 화강암의 열전도도는 2.13-5.87W/m-K의 범위를 가지며, 평균 열전도도는 3.57W/m-K, 편마암은 2.26-6.67W/m-K의 범위를 가지며, 평균 열전도도는 3.945W/m-K이다. 화강암의 평균 열확산율은 $1.43mm^2/sec$, 비열은 0.914J/gK, 편마암의 평균 열확산율은 $1.55mm^2/sec$, 비열은 0.912J/gK로 나타났다. 일반적으로 같은 암석의 열전도도 값의 범위가 큰 이유는 암석의 구성광물, 이방성 등에 영향을 받기 때문이다.

3차원 열유체 수치해석을 통한 현장 시공된 수직 밀폐형 지중열교환기의 열전달 거동 평가 (Heat transfer analysis of closed-loop vertical ground heat exchangers using 3-D fluid flow and heat transfer numerical model)

  • 박문서;이철호;민선홍;강신형;최항석
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.800-807
    • /
    • 2010
  • In this study, a series of numerical analyses has been performed in order to evaluate the performance of a full-scale closed-loop vertical ground heat exchanger constructed in Wonju. The circulation pipe HDPE, borehole and surrounding ground were modeled using FLUENT, a finite-volume method (FVM) program, for analyzing the heat transfer process of the system. Two user-defined functions (UDFs) accounting for the difference in the temperatures of the circulating inflow and outflow water and the change of the surrounding ground temperature with depth were adopted in the FLUENT model. The thermal properties of materials estimated in laboratory were used in the numerical analyses to compare the thermal efficiency of the cement grout with that of the bentonite grout used in the construction. The results of the simulation provide a verification of the in situ thermal response test data. The numerical model with the ground thermal conductivity of 4W/mK yielded the simulation result closer to the in-situ thermal response test than with the ground thermal conductivity of 3W/mK. From the results of the numerical analyses, the effective thermal conductivities of the cement and bentonite grouts were obtained to be 3.32W/mK and 2.99 W/mK, respectively.

  • PDF