A Study on Thermal Properties of Rocks from Gyeonggi-do Gangwon-do, Chungchung-do, Korea

경기도, 강원도, 충청도 일대의 암석 열물성 특성 연구

  • Park, Jeong-Min (Chungnam National University) ;
  • Kim, Hyoung-Chan (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Young-Min (Groundwater and Geothermal Resources Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Song, Moo-Young (Chungnam National University)
  • 박정민 (충남대학교) ;
  • 김형찬 (한국지질자원연구원 지하수지열연구부) ;
  • 이영민 (한국지질자원연구원 지하수지열연구부) ;
  • 송무영 (충남대학교)
  • Published : 2007.12.28

Abstract

We made 712 thermal property measurements on igneous, metamorphic and sedimentary rock samples from Gyeonggi-do, Gangwon-do and Chungchung-do, Korea. The average thermal conductivities of igneous, metamorphic and sedimentary rocks are 3.58W/m-K, 4.16W/m-K and 4.53W/m-K, respectively. Thermal conductivity of granite and gneiss are 2.13-5.87W/m-K and 2.26-6.67W/m-K, with average values of 3.57W/m-K and 3.945W/m-K, respectively. The average of thermal diffusivities are $1.43mm^2/sec\;and\;1.55mm^2/sec$, respectively; the average of specific heat values are 0.914J/gK, 0.912J/gK for granite and gneiss samples, respectively. The thermal conductivity of a rock type generally have a wide range because it depends on various factors such as dominant mineral phase, micro-structure, anisotropy, and so on.

경기도, 강원도, 충청도 일대에서 화성암, 변성암, 퇴적암의 총 712개의 암석을 채취하여 열물성을 측정하였다. 측정 결과로 화성암의 평균 열전도도는 3.58W/m-K, 변성암은 4.16W/m-K, 퇴적암은 4.53W/m-K이다. 우리나라의 경우 화강암과 편마암이 주를 이루고 있는데 이에 대한 열물성 값을 보면 화강암의 열전도도는 2.13-5.87W/m-K의 범위를 가지며, 평균 열전도도는 3.57W/m-K, 편마암은 2.26-6.67W/m-K의 범위를 가지며, 평균 열전도도는 3.945W/m-K이다. 화강암의 평균 열확산율은 $1.43mm^2/sec$, 비열은 0.914J/gK, 편마암의 평균 열확산율은 $1.55mm^2/sec$, 비열은 0.912J/gK로 나타났다. 일반적으로 같은 암석의 열전도도 값의 범위가 큰 이유는 암석의 구성광물, 이방성 등에 영향을 받기 때문이다.

Keywords

References

  1. Beardsmore, G. R. and Cull, J. P., (2001) Crustal heat flow: A guide to measurement and modeling, Cam­bridge Univ. Press, 324p
  2. Birch, E and Clark, H., (1940) The thermal conductivity of rocks and its dependance upon temperature and composition, Am. J. Sci., v.238, no. 8, p. 529-558 https://doi.org/10.2475/ajs.238.8.529
  3. Blackwell, D. D. and Steele, J. L., (1989) Thermal con­ductivity of sedimentary Rocks: Measurement and significance, p. 14-34
  4. Cermak, V. and L. Rybach., (1982) Thermal conductivity and specific heat of minerals and rocks, in Physical properties of rocks, vol. 1-a, Landolt-Bornstein, edited by G. Angenheister, Springer-Verlag, New York p. 305-403
  5. Cha, J., An. S., Koo, M.-H., Song, Y. and Kim, H. C. (2007) The effect of porosity and water content on thermal conductivity of soils, Journal of KoSSGE., in review
  6. Clauser, C. and Hueges, E. (1995) Rock physics & phase relations: A handbook of physical contents, in T. J. Ahrens, (ed.), AGU, p. 105-125
  7. European Renewable Energy Council (2004) Renewable energy scenario to 2040, http://www.erec-renew­ables.org/
  8. Herrin J, M. and Deming, D. (1996) Thermal conduc­tivity of U.S. coals, J. Geophy. Res., v. 101, no. B11, p. 25381-25386 https://doi.org/10.1029/96JB01884
  9. Kappelmeyer, O. and Haenel, R. (1974) Geothermics with special reference to application, Gebruder Born­traeger, 238p
  10. Kim, H. C. (2004) Interpretation of geothermal anomaly using heat flow and geological data in south Korea, Ph. D, thesis, Chungnam Nat. Univ, 123p
  11. Lee, Y. and Deming, D. (1998) Evaluation of thermal con­ductivity temperature corrections applied in terrestial heat flow studies, J. Geophy. Res., v. 103, no. B2, p. 2447-2454 https://doi.org/10.1029/97JB03104
  12. Norden, B. and Frster, A. (2006) Thennal conductivity and radiogenic heat production of sedimentary and magmatic rocks in the Northeast German Basin, AAPG Bull., v. 90, no. 6, p. 939-962 https://doi.org/10.1306/01250605100
  13. Parker, W. J., Jenkins, R. J., Buter, C. P. and Abbott, G. L. (1961) Flash method of determining thermal diffu­sivity, heat capacity and thermal conductivity, J. Appl. Phys., v. 32, no. 9, p. 1679-1684 https://doi.org/10.1063/1.1728417
  14. Song, M. Y., Kim, H. C. and Jun, U. S. (1996) The mea­surements of heat transfer on some rock specimens in Korea, Jour. Korean Earth Science Society., v. 17, no. 6, p. 458-464
  15. Song, Y., Kim, H. C. and Lee, S.-K. (2006) Geothermal research and development in Korea, Econ. Environ. Geol., v. 39, no. 4, p. 485-494
  16. Swan, A. R. H. and Sandilands, M. (1995) Introduction to geological data analysis, Blackwell Science Ltd, 446p
  17. VDI. (2000) Thermal use of the underground; funda­mentals, approvals, environmental aspects, 157p
  18. Williams, C. F. and Anderson, R. N. (1990) Thermo­physical properties of the Earth's crust: In situ mea­surements from continental and ocean drilling, J. Geophys. Res., v. 95, no. B6, p. 9209-9236 https://doi.org/10.1029/JB095iB06p09209
  19. Woodside, W. H. and Messmer, J. H. (1961) Thennal con­ductivity of porous media: 2. Consolidated rocks, J. Appl. Phys., v. 32, p. 1699-1706 https://doi.org/10.1063/1.1728420