• Title/Summary/Keyword: thermal conductivities

Search Result 328, Processing Time 0.02 seconds

Effect of Boron on Electrical and Thermal Conductivities of Aluminum (알루미늄의 전기 및 열전도도에 미치는 Boron의 영향)

  • Park, Min-Kyung;Cho, Jae-Ik;Lee, Seong-Hee;Kim, Cheol-Woo
    • Journal of Korea Foundry Society
    • /
    • v.36 no.5
    • /
    • pp.147-152
    • /
    • 2016
  • Aluminum has been used as an alternative material for copper, due to its good electrical and thermal conductivities. However, small quantities of transition elements such as Ti and V affect the conductivities of aluminum. Therefore, in this study, the influence of B addition to reduce the effects of Ti and V on the conductivities of aluminum was investigated. Both the electrical and thermal conductivities of aluminum were improved with addition of B up to 0.05 wt%, while the conductivities were gradually reduced with an excess amount of B. SEM-EDS and XRD results exhibited that B reacted with Ti and V element to form diborides, such as $TiB_2$ and $VB_2$ phase, and those diborides tended to settle down to the bottom of the crucible because their densities were higher than that of aluminum melt. As a result, B reduced the deleterious effects of Ti and V, and the electrical and thermal conductivities of aluminum were improved.

Analysis of Thermal Conductivities of Carbon/Phenolic and Silica/Phenolic Ablative Composites by Laser Pulse Method (레이저 섬광법을 이용한 Carbon/Phenolic 및 Silica/Phenolic 내열복합재료의 열전도도 분석)

  • Kim, H.Y.;Kim, P.W.;Hong, S.H.;Kim, Y.C.;Yeh, B.H.;Jung, B
    • Composites Research
    • /
    • v.12 no.3
    • /
    • pp.75-83
    • /
    • 1999
  • The thermal properties of carbon/phenolic and silica/phenolic ablative composites were investigated by measuring the heat capacity, thermal diffusivity and thermal conductivity. The heat capacities of carbon/ phenolic and silica/phenolic composites were calculated from differential scanning calorimeter curve. The thermal diffusivities of carbon/phenolic and silica/phenolic composites were measured by the laser flash method with varying laminated direction, i.e., with laminar direction and across laminar direction. The thermal diffusivities decreased with increasing temperature. The thermal conductivities of carbon/phenolic and silica/phenolic composites were calculated using the heat capacity, density and thermal diffusivity. The thermal conductivities increased with increasing temperature. The thermal conductivity of with laminar direction is two times higher than that of across-laminar direction in carbon/phenolic composite due to the directionality of thermal conductivity of carbon fiber. The thermal conductivities of two dimensional fiber reinforced composites were analyzed using the conductivities of constituents and volume fraction of each constituent. The thermal conductivities of carbon fiber and silica fiber were calculated from thermal conductivities of carbon/phenolic and silica/phenolic composites. The thermal conductivities of carbon/phenolic and silica/phenolic composites at RT were predicted from thermal conductivities of fiber and resin with varying the volume fraction of fiber.

  • PDF

Material Property Characterization Method and Experimental Measurement of the Effective Thermal Conductivities of Woven Fabric Composite Materials (직물 복합재료의 물성치 특성화 기법 및 실험적 계측)

  • Moon, Young-Kyu;Goo, Nam-Seo;Kim, Cheol;Woo, Kyung-Sik
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2001.10a
    • /
    • pp.64-69
    • /
    • 2001
  • In general, laminate effective orthotropic thermal conductivities are dependent on fiber and matrix material properties, fiber volume fraction and fabric geometric parameters. This paper deals with the predicting method of the transverse and the in-plane thermal conductivities of plain weave fabric composites based on the three dimensional series-parallel thermal resistance network. Thermal resistance network was applied to unit cell model that characterizes the periodically repeated pattern of plain weave. Also, an experiment apparatus is setup to measure the thermal conductivities of composite material. The numerical and experimental results of carbon/epoxy plain weave are compared.

  • PDF

Thermal Conductivities of Nanofluids (나노 유체(Nanofluids)의 열전도도)

  • Jang, Seok-Pil
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1388-1393
    • /
    • 2004
  • Investigators have been perplexed with the thermal phenomena behind the recently discovered nanofluids, fluids with unprecedented stability of suspended nanoparticles although huge difference in the density of nanoparticles and fluid. For example, nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

  • PDF

Thermal Conductivities of Nanofluids (나노 유체(Nanofluids)의 열전도도)

  • Jang, Seok-Pil
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.8 s.227
    • /
    • pp.968-975
    • /
    • 2004
  • Nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

High Temperature Thermal Conductivities in La2Ce2O7−Gd2Ce2O7−Y2Ce2O7 Pyrochlore System for Thermal Barrier Coatings (열차폐코팅용 La2Ce2O7−Gd2Ce2O7−Y2Ce2O7 Pyrochlore계의 고온 열전도도)

  • Yoon, So-Young;Lee, Sung-Min;Shim, Kwang-Bo;Kim, Hyung-Tae
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.7
    • /
    • pp.387-392
    • /
    • 2007
  • Thermal conductivities in $La_2Ce_2O_7-Gd_2Ce_2O_7-Y_2Ce_2O_7$ ternary system have been investigated. Pyrochlore phases formed at all ternary compositions and their sinterbilities were decreased with La addition. Thermal conductivities showed a minimum value at $La_2Ce_2O_7$ with moderate increases as $Y^{3+}$ and $Gd^{3+}$ ions replaced $La^{3+}$. Thermal expansion anomaly observed in $La_2Ce_2O_7$, which might be detrimental to TBC application, were suppressed by $Y^{3+}$ and $Gd^{3+}$ additions, with resultant thermal conductivities, $1.3{\sim}1.5 W/mK$ at $1000^{\circ}C$.

Measurement of Thermal Conductivities of Freon-12 and Freon-22 at High Pressure by Unsteady Hot Wire Method (비정상 열선법에 의한 Freon-12와 Freon-22의 고압상태에서의 열전도율측정)

  • ;;Lee, Taik Sik;Ro, Sung Tack
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.2 no.2
    • /
    • pp.42-46
    • /
    • 1978
  • Thermal conductivities of Freon-12 and Freon-22 were measured at room temperature up to 35 MPa with the aid of transient hot wire method. Glycerin was used to check the performance of the experimental equipment. The thermal conductivities of Freon-12 and Freon-22 at the maximum pressure, 35 MPa, were increased by 25% approximately for those at satufated state.

Effective Thermal Conductivities of Fiber-Reinforce Composites Using a Thermal-Electrical Analogy (열-전기 유사성을 이용한 복합재료의 열전도도 예측)

  • 조영준;강태진;윤재륜
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.81-84
    • /
    • 2002
  • An approach for predicting the effective thermal conductivities of fiber-reinforce composite has been developed based on a thermal-electrical analogy. The unit cell of the composite laminate is divided into regular volume elements and the material properties have been given to each element. By constructing the series-parallel thermal resistance network, the thermal conductivities of composite both in-plane and out-of-plane direction have been predicted. Graphite/Epoxy composite is used for a balanced plain-weave composite laminate. By comparing the predicted results and the previous works, good agreement has been found.

  • PDF

Thermal Conductivities of Grain (곡물(糓物)의 열전도계수(熱傳導係數)에 관(關)한 연구(硏究))

  • Kim, Man Soo;Koh, Hak Kyun
    • Journal of Biosystems Engineering
    • /
    • v.7 no.1
    • /
    • pp.1-16
    • /
    • 1982
  • The thermal conductivies of grain are influenced by many physical factors such as' initial temperature, moisture content, composition, bulk density or porosity of grain. However, not only few researchers considered all these factors in determining thermal conductivities of grain but also many researchers considered only moisture content as a major effective factor on the thermal conductivity. This study was conducted to experimentally determine the thermal conductivities of rough rice (3 Japonica-type, 3 Indica-type) and barley(covered, naked) as a function of initial temperature, moisture content and porosity of grain, and to investigate the effect of those physical factors on the thermal conductivities of grain. The results of this study are summarized as follows; 1. The average time correction value for this experimental apparatus was 7 sec, which. was insignificant to the calculated thermal conductivity. The resulting conductivity for considering time correction value was only 4.9 percent higher than that calculated by the non-corrected equation. 2. The thermal conductivity was in the range of 0.1208~0.2058W/$m^{\circ}K$ for naked barley, 0.1138~0.1724W/$m^{\circ}K$ for covered barley, 0.0912~0.1864W/$m^{\circ}K$ for Japonica-type rice and 0.086~0.1774W/$m^{\circ}K$ for Indica-type rice. 3. The thermal conductivities of grain increased with initial temperature and moisture content of grain but decreased with porosity of grain. 4. The regression equations of the thermal conductivity of each grain were determined as a function of initial temperature, moisture content and porosity. The regression equations of the thermal conductivity of both Japonica-type and Indica-type rough rice were also determined.

  • PDF

Effect of the Size and Amount of SiC on the Microstructures and Thermal Conductivities of ZrB2-SiC Composite Ceramics (ZrB2-SiC 복합세라믹스의 미세구조와 열전도도에 미치는 SiC 크기와 첨가량의 영향)

  • Kim, Seong-Won;Kwon, Chang-Sup;Oh, Yoon-Suk;Lee, Sung-Min;Kim, Hyung-Tae
    • Journal of Powder Materials
    • /
    • v.19 no.5
    • /
    • pp.379-384
    • /
    • 2012
  • This paper reports the microstructures and thermal conductivities of $ZrB_2$-SiC composite ceramics with size and amount of SiC. We fabricated sintered bodies of $ZrB_2$-x vol.% SiC (x=10, 20, 30) with submicron and nanosized SiC densified by spark plasma sintering. Microstructure retained the initial powder size of especially SiC, except the agglomeration of nanosized SiC. For sintered bodies, thermal conductivities were examined. The observed thermal conductivity values are 40~60 W/mK, which is slightly lower than the reported values. The relation between microstructural parameter and thermal conductivity was also discussed.