DOI QR코드

DOI QR Code

Thermal Conductivities of Nanofluids

나노 유체(Nanofluids)의 열전도도

  • 장석필 (한국항공대 항공우주기계공학부)
  • Published : 2004.08.01

Abstract

Nanofluids have anomalously high thermal conductivities at very low fraction, strongly temperature-dependent and size-dependent conductivities, and three-fold higher critical heat flux than that of base fluids. Traditional conductivity theories such as the Maxwell or other macroscale approaches cannot explain why nanofluids have these intriguing features. So in this paper, we devise a theoretical model that accounts for the fundamental role of dynamic nanoparticles in nanofluids. The proposed model not only captures the concentration and temperature-dependent conductivity, but also predicts strongly size-dependent conductivity. Furthermore, we physically explain the new phenomena for nanofluids. In addition, based on a proposed model, the effects of various parameters such as the ratio of thermal conductivity of nanofluids to that of a base fluid, volume fraction, nanoparticle size, and temperature on the thermal conductivities of nanofluids are investigated.

Keywords

References

  1. Hwang, J., Kim, S. Y. and Kang, B. H., 2003, 'Thermal Transport from an Aluminum Foam Heat Sink in a Confined Impinging Air Jet,' Transactions of the KSME B, Vol. 27, No. 4, pp. 496-503
  2. Jang, S. P., Kim, S. J. and Paik, K. W, 2003, 'Experimental Investigation of Thermal Characteristics for a Microchannel Heat Sink Subject to an Impinging Jet, Using a Micro-Thermal Sensor Array,' Sensors and Actuators A, Vol. 105, pp. 211-224 https://doi.org/10.1016/S0924-4247(03)00103-1
  3. Bar-Cohen, A. and Jelinek, M., 1986, 'Optimum Arrays of Longitudinal, Rectangular Fins in Con-vective Heat Transfer,' Heat Transfer Eng., Vol. 6, pp. 595-601
  4. Knight, R. W, Hall, D. J., Gooding, J. S. and Jaeger, R. C., 1992, 'Heat Sink Optimization with Application to Microchannels,' IEEE Trans. Comp. Hybrids Manuf. Technol., Vol. 15, pp. 832-842 https://doi.org/10.1109/33.180049
  5. Wirtz, R. A., Chen, W. and Zhou, R., 1994, 'Effect of Flow Bypass on the Performance of Longitudinal Fin Heat Sinks,' ASME J. Electronic Packaging, Vol. 116, pp. 206-211 https://doi.org/10.1115/1.2905687
  6. Tuckerman, D. B. and Pease, R. F. W., 1981, 'High-Performance Heat Sinking for VLSI,' IEEE Electronic Devices, Vol. 2, pp. 126-129 https://doi.org/10.1109/EDL.1981.25367
  7. Min, J. Y., Jang, S. P. and Kim, S. J., 2004, 'Effect of Tip Clearance on the Cooling Performance of a Micro Channel Heat Sink,' Int. J. Heat Mass Transfer, Vol. 45, pp. 2823-2827 https://doi.org/10.1016/S0017-9310(02)00006-6
  8. Lee, S., Choi, S. U. S., Li, S. and Eastman, J. A., 1999, 'Measuring Thermal Conductivity of Fluids Containing Oxide Nanoparticles,' ASME J. Heat Transfer, Vol. 121, pp. 280-289 https://doi.org/10.1115/1.2825978
  9. Eastman, J. A., Choi, S. U. S., Yu, W. and Thompson, L. J., 2001, 'Anomalously Increased Effective Thermal Conductivity of Ethylene Glycol-Based Nanofluids Containing Copper Nanoparticles,' Appl. Phys. Lett., Vol. 78, pp. 718-720 https://doi.org/10.1063/1.1341218
  10. Choi, S. U. S., Zhang, Z. G, Yu, W., Lockwood, F. E. and Grulke, E. A., 2001, 'Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions,' Appl. Phys. Lett., Vol. 79, pp. 2252-2254 https://doi.org/10.1063/1.1408272
  11. Das, S. K., Putra, N., Thiesem, P. and Roetzel, W., 2003, 'Temperature Dependence of Thermal Conductivity Enhancement for Nanofluids,' ASME J. Heat Transfer, Vol. 125, pp. 567-574 https://doi.org/10.1115/1.1571080
  12. Patel, H. E., Das, S. K., Sundararajan, T., Nair, A. S., George, B. and Pradeep, T., 2003, 'Thermal Conductivities of Naked and Monolayer Protected Metal Nanoparticle Base Nanofluids: Manifestation of Anomalous Enhancement and Chemical Effects,' Appl. Phys. Lett., Vol. 83, pp. 2931-2933 https://doi.org/10.1063/1.1602578
  13. Jang, S. P. and Choi, S. U. S., 2004, 'The Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids,' Appl. Phys. Lett. (In Review) https://doi.org/10.1063/1.1756684
  14. Chen, G., 1996, 'Nonlocal and Nonequilibrium Heat Conduction in the Vicinity of Nanoparticles,' ASME J. Heat Transfer, Vol. 118, pp. 539-545 https://doi.org/10.1115/1.2822665
  15. You, S. M., Kim, J. H. and Kim, K. H., 2003, 'Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer,' Appl. Phys. Lett., Vol. 83, pp. 3374-3376 https://doi.org/10.1063/1.1619206
  16. Das, S. K., Putra, N. and Roetzel, W., 2003, 'Pool Boiling Characteristics of Nano-Fluids,' Int. J. Heat Mass Transfer, Vol. 46, pp. 851-862 https://doi.org/10.1016/S0017-9310(02)00348-4
  17. Vassallo, P., Kumar, R. and Amico, S. D., 2004, 'Pool Boiling Heat Transfer Experiments in Silica-water Nano-Fluids,' Int. J. Heat Mass Transfer, Vol. 47, pp. 407-411 https://doi.org/10.1016/S0017-9310(03)00361-2
  18. Maxwell, J. C., 1873, 'Electricity and Magnetism Claredon,' Press Oxford UK
  19. Hamilton, R. L. and Crosser, O. K., 1962, 'Thermal Conductivity of Heterogeneous Two-Component Systems,' I & EC Fundamental, Vol. 1, pp. 187-191 https://doi.org/10.1021/i160003a005
  20. Incropera, F. P. and Dewitt, D. P., 1996, 'Fundamental of Heat and Mass Transfer,' 4th Ed., John Wiley & Sons
  21. Kittel, C. and Kroemer, H., 1980, 'Thermal physics,' 2nd Ed., W.H. Freeman and Company
  22. Kapitza, P. L., 1941, 'The Study of Heat Transfer in Helium II,' J. Phys. (USSR), Vol. 4, p. 181
  23. Einstein, A., 1956, 'Investigation on the Theory of Brownian Movement,' Dover, New York
  24. Yu, C. -J., Richter, A. G, Datta, A., Durbin, M. K. and Dutta, P., 1999, 'Observation of Molecular Layering in Thin Liquid Films Using X-Ray Reflectivity,' Phys. Rev. Lett. Vol. 82, pp. 2326-2329 https://doi.org/10.1103/PhysRevLett.82.2326
  25. White, F. M., 1991, 'Viscous Fluid Flow,' 2nd Ed., McGraw-Hill
  26. Tomitika, S., Aoi, T. and Yosinabu, H., 1953, 'On the Forces Acting on a Circular Cylinder Set Obliquely in Uniform Stream at Lower Values of Reynolds Number,' Proc. Roy. Soc. London Ser. A, Vol. 129, pp. 233-244
  27. Schlichting, H., 1979, 'Boundary Layer Theory,' 7th Ed., McGraw-Hill Part B
  28. Masuda, H., Ebata, A., Teramae, K. and Hishinuma, N., 1993, 'Alternation of Thermal Conductivity and Viscosity of Liquid by Dispersing Ultra-Fine Particles (Dispersion ${\gamma}-Al_{2}O_{3},\;SiO_{2},\;and\;TiO_{2}$ Ultra-Fine particles),' Netsu Bussei (Japan), Vol. 4, pp. 227-233