• 제목/요약/키워드: thermal conduction

검색결과 757건 처리시간 0.023초

적외선 검출기용 극저온 챔버에서 복사 차폐막을 고려한 열해석 (Thermal Analysis of a Cryochamber for an Infrared Detector Considering a Radiation Shield)

  • 김영민;강병하
    • 설비공학논문집
    • /
    • 제18권8호
    • /
    • pp.672-677
    • /
    • 2006
  • The steady cooling characteristics of a cryochamber for infrared (IR) detector have been investigated analytically, considering radiation shields. The thermal modeling considers the conduction heat transfer through cold finger, the gaseous conduction due to out-gassing, and the radiation heat transfer. The cooling load of the cryochamber is obtained by using a fin equation. The results obtained indicate that the gaseous conduction plays an important role in determining the steady cooling load. The steady cooling load is increased as the gas pressure is increased. It is also found that the cooling load is substantially decreased with a radiation shield. The most thermal load of a cryochamber occurs through the cold finger.

Inverse Heat Conduction Problem in One-Dimensional Time-Dependent Medium with Modified Newton-Raphson Method

  • Kim, Sin;Lee, Yoon-Joon;Lee, Jung-hoon;Kim, Min-Chan
    • 에너지공학
    • /
    • 제9권1호
    • /
    • pp.37-40
    • /
    • 2000
  • An inverse problem is solved to determine the space-dependent thermal conductivity in one-dimensinoal time-dependent heat conduction medium with the data imposed and measured at the two end-points. The thermal conductivity is approximated as a linear combination of known functions with unknown coefficients and the unknowns are obtained by the governing and sensitivity equations using modified Newton-Raphson method. The estimated results are compared with exact thermal conductivities and it shows good agreements. This approach is expected to be used to estimate spatial composition of heat conduction medium.

  • PDF

Analytical solution of the Cattaneo - Vernotte equation (non-Fourier heat conduction)

  • Choi, Jae Hyuk;Yoon, Seok-Hun;Park, Seung Gyu;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권5호
    • /
    • pp.389-396
    • /
    • 2016
  • The theory of Fourier heat conduction predicts accurately the temperature profiles of a system in a non-equilibrium steady state. However, in the case of transient states at the nanoscale, its applicability is significantly limited. The limitation of the classical Fourier's theory was overcome by C. Cattaneo and P. Vernotte who developed the theory of non-Fourier heat conduction in 1958. Although this new theory has been used in various thermal science areas, it requires considerable mathematical skills for calculating analytical solutions. The aim of this study was the identification of a newer and a simpler type of solution for the hyperbolic partial differential equations of the non-Fourier heat conduction. This constitutes the first trial in a series of planned studies. By inspecting each term included in the proposed solution, the theoretical feasibility of the solution was achieved. The new analytical solution for the non-Fourier heat conduction is a simple exponential function that is compared to the existing data for justification. Although the proposed solution partially satisfies the Cattaneo-Vernotte equation, it cannot simulate a thermal wave behavior. However, the results of this study indicate that it is possible to obtain the theoretical solution of the Cattaneo-Vernotte equation by improving the form of the proposed solution.

열용량이 큰 벽체나 지붕재의 전도시계열 계수를 유한차분법으로 구하는 과정 (A Procedure for Computing Conduction Time Series Factors for Walls and Roofs with Large Thermal Capacity by Finite Difference Method)

  • 변기홍
    • 한국태양에너지학회 논문집
    • /
    • 제38권5호
    • /
    • pp.27-36
    • /
    • 2018
  • The purpose of this paper is to apply the numerical solution procedure to compute conduction time series factors (CTSF) for construction materials with large thermal capacities. After modifying the procedure in Ref. [9], it is applied to find the CTSF for the wall type 19 and the roof type 18 of ASHRAE. The response periods for one hr pulse load are longer than 24hrs for these wall and roof. The CTSF generated using modified procedure agree well with the values presented in the ASHRAE handbook. The modified procedure is a general procedure that can be applied to find CTSF for materials with complex structures. For the large thermal capacity materials, it should be checked whether thermal response period of the material is over 24hr or not. With suggested solution procedure, it is easy to check the validity of the CTSF based on 24hr period.

REDUCED DIFFERENTIAL TRANSFORM FOR THERMAL STRESS ANALYSIS UNDER 2-D HYPERBOLIC HEAT CONDUCTION MODEL WITH LASER HEAT SOURCE

  • SUTAR, CHANDRASHEKHAR S.;CHAUDHARI, KAMINI K.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제25권2호
    • /
    • pp.54-65
    • /
    • 2021
  • In this study, a two-dimensional thermoelastic problem under hyperbolic heat conduction theory with an internal heat source is considered. The general solution for the temperature field, stress components and displacement field are obtained using the reduced differential transform method. The stress and displacement components are obtained using the thermal stress function in the reduced differential transform domain. All the solutions are obtained in the form of power series. The special case with a time-dependent laser heat source has been considered. The problem is considered for homogeneous material with finite rectangular cross-section heated with a non-Gaussian temporal profile. The effect of the heat source on all the characteristics of a material is discussed numerically and graphically for magnesium material taking a pulse duration of 0.2 ps. This study provides a powerful tool for finding the solution to the thermoelastic problem with less computational work as compared to other methods. The result obtained in the study may be useful for the investigation of thermal characteristics in engineering and industrial applications.

내부결함이 있는 고온 금형에서의 쌍곡선형 열전도 현상 (Phenomena of Hyperbolic Heat Conduction in the Hot Mold with an Inner Defect)

  • 이관수;임광옥;조형철;김우승
    • 대한기계학회논문집B
    • /
    • 제25권7호
    • /
    • pp.952-957
    • /
    • 2001
  • In the glass forming process, the phenomena of hyperbolic heat conduction in the hot mold with an inner defect are studied analytically. It is shown that the temperature predicted by the parabolic model is underestimated compared to the one by the hyperbolic model. As the rmal wave is reflected from the area with defects and then arrives at the surface supplied by the heat flux, it is expected that there exists thermal shock in the materials. The area with defects is assumed to be adiabatic since its thermal conductivity is much lower compared to the one of the material. The results also indicate that the sudden temperature -jump in the mold surface can cause diverse problems such as glass defect (embryo mark, etc), oxidation of mold and coating, and change of material properties.

The Analysis of Heat Transfer through the Multi-layered Wall of the Insulating Package

  • Choi, Seung-Jin
    • 한국포장학회지
    • /
    • 제12권1호
    • /
    • pp.45-53
    • /
    • 2006
  • Thermal insulation is used in a variety of applications to protect temperature sensitive products from thermal damage. Several factors affect the performance of insulation packages. Among these factors, the thermal resistance of the insulating wall is the most important factor to determine the performance of the insulating package. In many cases, insulating wall consists of multi-layered structure and the heat transfer through this structure is a very complex process. In this study, an one-dimensional mathematical model, which includes all of the heat transfer principles covering conduction, convection and radiation in multi-layered structure, were developed. Based on this model, several heat transfer phenomena occurred in the air space between the layer of the insulating wall were investigated. From the simulation results, it was observed that the heat transfer through the air space between the layer were dominated by conduction and radiation and the low emissivity of the surface of each solid layer of the wall can dramatically increase the thermal resistance of the wall. For practical use, an equation was derived for the calculation of the thermal resistance of a multi-layered wall.

  • PDF

열전도를 고려한 각 자세에 따른 평균 피부온의 산출 (NEW WEIGHTING COEFFICIENTS FOR CALCULATING MEAN SKIN TEMPERATURE IN RELATION TO THE POSTURE WITH CONSIDERATION TO HEAT CONDUCTION)

  • 이주연;미야모토 세에치;이소다노리오
    • 대한인간공학회지
    • /
    • 제19권2호
    • /
    • pp.63-74
    • /
    • 2000
  • This paper is to clarify a thermal physiological index that can account for the effects of local thermal environment. For this purpose two young female subjects exposing themselves to the above while sitting on a chair, sitting on the floor and lying on the floor were measured. These three representative postures accompanied the different contact surface areas, thereby the heat conduction rate between the floor and subject was quantitatively measured for each posture. It made the present study deal with the effect of heat conduction concerning the modified mean skin temperature and finally propose new weighting coefficients for the mean skin temperature calculation based on the Hardy & DuBois' formulas. In order to verify the proposed model, the experiment was carried out using a floor heating system. The comparison between the experimental result and prediction revealed that the proposed model should be about 10% more accurate than the conventional one in the case of lying on the floor which the heat conduction effect becomes important.

  • PDF

비정상 피복열선법 열전도도 측정시 시간-온도 특성에 대한 점근해 (Large Time Asymptotic Solution for Unsteady Heat Conduction Problem of Coated Hot-Wire Thermal Conductivity Measurement)

  • 배철호
    • 대한기계학회논문집
    • /
    • 제19권7호
    • /
    • pp.1684-1690
    • /
    • 1995
  • A large time asymptotic solution for an unsteady heat conduction problem of a coated hot wire thermal conductivity measurement process was theoretically found. The solution revealed that the slope of wire temperature versus logarthmic time, which is used to evaluate the thermal conductivity, remains unchanged for large values of time even if a layer of coating is present on the hot wire. The significance of this result is that the thermal conductivity of an electrically conductive fluid can be measured with a coated hot wire using the same conversion relation as for a bare wire.

경차용 가솔린 기관 실린더 블럭의 열응력 분포 특성에 대한 연구 (Study on the Thermal Stress Distribution Characteristivs of the Cylinder Block of a Light Gasoline Engine)

  • 김병탁
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제22권6호
    • /
    • pp.800-808
    • /
    • 1998
  • In this study the thermal stress distribution and deformantion characteristics resulting from the nonuniform temperature fields of the cylinder block of a light 3-cylinder 4-stroke gasoline engine were analyzed using the 3-dimensional finite element method. The temperature distributions req-uisite for the thermoelastic behavior alalysis were obtained from the steady-state heat conduction analysis performed on the basis of experimental data. in order to examine the effect of a ceramic material the cylinder liner was replaced by the silicon nitride($Si_{3}N_{4}$) and its thermal behaviors were compared with those of the original block.

  • PDF