• Title/Summary/Keyword: thermal conditions

Search Result 4,621, Processing Time 0.045 seconds

A Study on the Development of Unified Ball Valve and Polyethylene-Steel Pipe Via Virtual Manufacturing and Experimental Approach (가상생산 및 실험을 통한 폴리에틸렌관과 금속관 일체형 볼 밸브의 개발에 관한 연구)

  • Suh, Yeong-Sung;Yoo, Je-Hyuk;Ji, Min-Wuk;Song, Jeong-Hyun;Lee, Jae-Yoon
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.1
    • /
    • pp.47-54
    • /
    • 2010
  • In order to reduce the number of installation processes and the cost, a unified ball valve and polyethylene-steel pipe is proposed and tested. An integrated design approach is carried out such that a virtual manufacturing based on finite-element analysis is first performed in order to examine contact conditions under exaggerated temperature variations (${\Delta}T\;=\;60^{\circ}C$ and $-50^{\circ}C$ for summer and winter, respectively). From the final design configuration, it was predicted that the maximum contact pressures are 71 and 8.1 MPa for summer and winter, respectively, at relatively larger contact surface. Based on this observation, a prototype model is fabricated to go through an actual leakage test. The prototype pipe passed a hydrostatic strength test successfully, showing no leakage at even much higher (54 MPa) than the operational pressure (0.25 MPa).

A Study on the Variation of Physical Properties on the Secondary Product of Cement by Using Crushed Stone Powder (폐석분을 사용한 시멘트 2차 제품의 물리적 특성에 관한 연구)

  • Park, Ji-Sun;Lee, Sea-Hyun;Song, Hun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.103-111
    • /
    • 2012
  • One of the basic physical properties of the hardened cement paste, the rigidity, is deteriorated during concrete matrix forming, depending on the replacement rate of the crushed stone powder, and due to drying shrinkage. Therefore, the concrete containing crushed stone powder has been limitedly used as non-structural construction material. To improve these disadvantages, a hydrothermal reaction employing method can be considered. High-temperature and high-pressure water is involved in the hydrothermal reaction in the mixing with specific materials. The rigidity improving mechanism is related to the synthesis of calcium silicate. The calcium silicate is produced through reaction between calcium compounds and the silicic acid. Various kinds of calcium silicate can be produced depending on the CaO/$SiO_2$ mole ratio, the temperature of the hydrothermal synthesis, the pressure, and the reaction time. The product of the synthesis mechanism, tobermorite crystal, plays a pivotal role for the rigidity reinforcement. The crushed stone powder, analyzed in this study, contains 50 to 60% of $SiO_2$ and 10 to 20% $Al_2O_3$. The composite rate is appropriate to create the tobermorite crystal through formation of hardened cement matrix under the hydrothermal synthetic conditions and with the CaO in the cement. Moreover, further reinforcement was promoted using the property of material under the identical density through promoting the formation of tobermorite crystal.

  • PDF

Synthesis and characterization of thermally stable pink-red inorganic pigment for digital color (디지털 컬러용 pink-red 고온발색 무기안료의 합성 및 특성평가)

  • Lee, Won-Jun;Hwang, Hae-Jin;Kim, Jin-Ho;Cho, Woo-Suk;Han, Kyu-Sung
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.24 no.4
    • /
    • pp.169-175
    • /
    • 2014
  • Digital ink-jet printing system has many advantages such as fast and fine printing of various images, high efficiency and low cost process. Generally digital ink-jet printing requires ceramic pigments of cyan, magenta, yellow and black with thermal and glaze stability above $1000^{\circ}C$ for the application of porcelain product design. In this study, pink-red colored $CaO-SnO_2-Cr_2O_3-SiO_2$ pigment was synthesized using solid state reaction. The synthesis conditions of $Ca(Cr,Sn)SiO_5$ pigment such as annealing temperature, amount of mineralizer and non-stoichiometric composition were optimized. Crystal structure and morphology of the obtained $Ca(Cr,Sn)SiO_5$ pigment were analyzed using XRD, SEM, PSA, FT-IR and effect of Cr substitution on the pigment color was analyzed using Uv-vis. spectrophotometer and CIE $L^*a^*b^*$ measurement.

Preparation and Properties of Shape-Stabilized Phase Change Materials from UHMWPE and Paraffin Wax for Latent Heat Storage (파라핀과 초고분자량 폴리에틸렌으로 구성된 형태안정성 상 전이 물질의 제조 및 특성)

  • Lee, Hyun-Seok;Park, Jae-Hoon;Yim, Jong-Ha;Seo, Hye-Jin;Son, Tae-Won
    • Polymer(Korea)
    • /
    • v.39 no.1
    • /
    • pp.23-32
    • /
    • 2015
  • Phase change materials based on ultra high molecular weight of polyethylene (UHMWPE) blended with paraffin wax (mp $65^{\circ}C$) were studied in this paper. In addition, this paper reviews recent studies on the preparation of shape stabilized phase change materials (SSPCM), such as SSPCM from UHMWPE and paraffin wax (mp $65^{\circ}C$), their basic properties and possible applications to latent heat storage. The preparation method was an absorption method. Also, SSPCM composites were prepared by using a hot press at $200^{\circ}C$ for 10 min. The analysis for the shape ability of SSPCM to improve heat efficiency was measured by FTIR, SEM, DSC, XRD, and ARES. UHMWPE composites with 30 wt% paraffin wax (mp $65^{\circ}C$) demonstrated less deterioration of physical property and effective thermal property compared with other conditions. As a result, these SSPCMs could be used for the heat storage and release materials for various products.

Development of Climate Analysis Seoul(CAS) Maps Based on Landuse and Meteorogical Model (토지이용도와 기상모델을 이용한 서울기후분석(CAS)지도 개발)

  • Yi, Chae-Yeon;Eum, Jeong-Hee;Choi, Young-Jean;Kim, Kyu-Rang;Scherer, Dieter;Fehrenbach, Ute;Kim, Geun-Hoi
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.1
    • /
    • pp.12-25
    • /
    • 2011
  • It is needed to preserve good effects and to prevent bad influences on local climate in urban and environmental planning. This study seeks to develop climate analysis maps to provide realistic information considering local air temperature and wind flows. Quantitative analyses are conducted by CAS for the production, transportation, and stagnation of cold air, wind flow and thermal conditions by incorporating GIS analysis on land cover and elevation and meteorological analysis from MetPhoMod - a mesoscale weather model. The CAS helps The easier analysis and assessment of urban development on local climate. It will contribute to the better life of the people in cities by providing better understanding of the local climate to the urban space planners.

The Electrical Characteristics of Pentacene Thin-Film for the active layer of Organic TFT deposited at the Various Evaporation conditions and the Annealing Temperatures (증착조건 및 열처리 온도에 따른 유기 TFT의 활성층용 펜타센 박막의 전기적 특성 연구)

  • 구본원;정민경;김도현;송정근
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.80-83
    • /
    • 2000
  • In this work we deposited Pentacene thin film by OMBD at the various substrate temperatures, deposition rate and the various annealing temperatures for the fabrication of organic TFT and investigated the electrical and film surface characteristics such as sheet resistance, contact resistance and conductance Film thickness were measured by $\alpha$-step and the sheet resistance, contact resistance and conductance were extracted from the relation between the distance of the contacts and the resistance. During the film deposition the substrate temperature was held at 3$0^{\circ}C$, 4$0^{\circ}C$, 5$0^{\circ}C$, 6$0^{\circ}C$, 8$0^{\circ}C$ and 10$0^{\circ}C$, respectively. After the film deposition, Au contact was deposited by thermal evaporation. For the effect of annealing, the thin film was annealed in the nitrogen environment at 10$0^{\circ}C$ and 14$0^{\circ}C$ for 10 seconds, respectively. Film surface characteristics at the vatious substrate temperatures were measured by AFM. The crystallization of thin film was improved as the substrate temperatures were increased and the maximum gram size was 4${\mu}{\textrm}{m}$. The conductivity of thin film was found to be 7.40 $\times$10$^{-7}$ ~ 7.78$\times$10$^{-6}$ S/cm and the minimum contact resistance was 2.5324 ㏁.

  • PDF

Computational Chemistry Study on Gas Hydrate Formation Using HFC & HCFC Refrigerants (R-134a, R-227ea, R-236fa, R-141b) (수소불화탄소 및 수소염화불화탄소 냉매(R-134a, R-227ea, R-236fa, R-141b)를 이용한 가스 하이드레이트 형성에 관한 계산화학적 해석)

  • Kim, Kyung Min;An, Hye Young;Lim, Jun-Heok;Lee, Jea-Keun;Won, Yong Sun
    • Korean Chemical Engineering Research
    • /
    • v.55 no.5
    • /
    • pp.704-710
    • /
    • 2017
  • Although the desalination technique using gas hydrate formation is at a development stage compared to the commercially well-established reverse osmosis (RO), it still draws attention because of its simplicity and moderate operational conditions especially when using refrigerants for guest gases. In this study, DFT (density functional theory)-based molecular modeling was employed to explain the energetics of the gas hydrate formation using HFC (hydrofluorocarbon) and HCFC (hydrochlorofluorocarbon) refrigerants. For guest gases, R-134a, R-227ea, R-236fa, and R-141b were selected and three cavity structures ($5^{12}$, $5^{12}6^2$, and $5^{12}6^4$) composed of water molecules were constructed. The geometries of guest gas, cavity, and cavity encapsulating guest gas were optimized by molecular modeling respectively and their located energies were then used for the calculation of binding energy between the guest gas and cavity. Finally, the comparison of binding energies was used to propose which refrigerant is more favorable for the gas hydrate formation energetically. In conclusion, R-236fa was the best choice in terms of thermodynamic spontaneity, less toxicity, and low solubility in water.

Prediction of Matching Performance of Two-Stage Turbo-charging System Design for Marine Diesel Engine (선박용 디젤엔진의 2단과급 시스템설계를 위한 매칭성능 예측)

  • Bae, Jin-woo;Lee, Ji-woong;Jung, Kyun-sik;Choi, Jae-sung
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.626-632
    • /
    • 2015
  • The International Maritime Organization (IMO) has adopted several regulations for the prevention of air pollution from ships. In addition, there is a requirement for shipping liners to reduce greenhouse gas emissions. Accordingly, we need to take measurements to ensure that the steps taken are both efficient and environmentally friendly. It has been determined that the application of the Miller cycle in diesel engines has the effect of both reducing the amount of NOx and improving thermal efficiency. However, this method requires a considerably larger charge air pressure. Therefore, we consider a two-stage turbo-charging system, which not only results in a high charging pressure, but also improves the part load performance with an exhaust-gas bypass system or the application of the Miller cycle. Because of complications associated with the two-stage turbo-charging system, it is complex and difficult to realize a design that optimizes matching between diesel engine and turbo-chargers. Accordingly, it is necessary to perform a quantitative analysis to determine the effects and optimal conditions of these different systems in the early stage of system design. In this paper, we develop a simulation program to model these systems, and we verify that the results of this program are reliable. Further, we discuss methods that can be employed to improve its efficiency.

Study on the surface modification of zirconia with hydrophilic silanes (친수성기를 가진 실란을 이용한 지르코니아의 표면의 개질 연구)

  • Lee, Soo;Moon, Sung Jin
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.247-254
    • /
    • 2016
  • Since microzirconia has excellent thermal and mechanical properties with high chemical and electrical resistance, it can be used in various fields. When the surface of zirconia becomes hydrophilic, its dispersibility in water will be improved as well as the resistance to most hydrophobic contaminants will be increased. In this study, we investigated the introduction of a hydrophilic groups on the microzircornia surface through hydrolysis and condensation reactions with two different silanes containing hydrophilic functional groups, such as ${\gamma}$-aminopropyltrimethoxysilane (APS) and ${\gamma}$-ureidopropyltrimethoxysilane (UPS) at different pH and concentration conditions. A covalent bond formation between the surface hydroxyl groups of zirconia and that of hydrolyzed silanes was confirmed by ninhydrin test and FT-IR spectroscopy. However, the presence of Si on the surfaces of both silane modified microzirconias was unable to detect by SEM/EDS technique. In addition, particle size analysis results provide that the size of microzirconia was changed to smaller or bigger than that of original zirconia due to crushing and aggregation during the modification process. The water dispersibility was improved for only APS modifed zirconia (AS-2 and AS-3) under neutral pH condition, but the water dispersibility and stability for all cases of 0.5~2% UPS modifed zirconia (US series) were much improved.

Evaluation of Physico-mechanical Properties and Durability of Larix kaempferi Wood Heat-treated by Superheated Steam (과열증기 열처리 낙엽송재의 물리·역학적 성능 및 내후성능 평가)

  • Park, Yonggun;Park, Jun-Ho;Yang, Sang-Yun;Chung, Hyunwoo;Kim, Hyunbin;Han, Yeonjung;Chang, Yoon-Seong;Kim, Kyoungjung;Yeo, Hwanmyeong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.44 no.5
    • /
    • pp.776-784
    • /
    • 2016
  • In this study, green Larix kaempferi lumber was heat-treated by using superheated steam (SHS) at a pilot scale and then various physico-mechanical properties of the heat-treated wood were evaluated and compared with the properties of conventional hot air (HA) heat-treated wood. Decay resistance of brown rot fungi and compressive strength parallel to the grain of the SHS heat-treated wood without occurrence of drying check from green lumber were increased. On the other hand, density, equilibrium moisture content, shrinkage, and bending strength of the SHS heat-treated wood were lower than those of the conventional HA heat-treated wood. Because heat transfer and thermal hydrolysis of SHS heat treatment was accelerated by a large amount of water, the effect of SHS heat treatment on the physico-mechanical properties was higher than that of HA heat treatment at the similar conditions of temperature and time. From the results of this study, because green lumber can be heat-treated without occurrence of cracks or checks by using SHS and similar heat treatment effect on the physico-mechanical properties of wood can be produced despite a low temperature or short time of heat treatment, it is expected that heat time and energy consumption could be reduced by using SHS.