• Title/Summary/Keyword: thermal co-evaporation

Search Result 96, Processing Time 0.024 seconds

Enhanced Control of OLED Deposition Processes by OVPD(R)

  • Schwambera, M.;Meyer, N.;Keiper, D.;Heuken, M.;Hartmann, S.;Kowalsky, W.;Farahzadi, A.;Niyamakom, P.;Beigmohamadi, M.;Wuttig, M.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.336-339
    • /
    • 2007
  • The enhanced control of OLED deposition processes by Organic Vapor Phase Deposition $(OVPD^{(R)})$ is discussed. $OVPD^{(R)}$ opens a wide space of process control parameters. It allows the accurate and individual control of deposition layer properties like morphology and precise mixing of multi component layers (co-deposition) in comparison to conventional deposition manufacturing processes like e. g. VTE (vacuum thermal evaporation).

  • PDF

Catalytic combustion type hydrogen micro gas sensor using thin film heater and nano crystalline SnO2 (나노 결정 SnO2와 백금 박막히터를 이용한 접촉연소식 마이크로 가스센서의 감응특성 연구)

  • Han, Sang-Do;Hong, Dae-Ung;Han, Chi-Hwan;Chun, Il-Soo
    • Journal of Sensor Science and Technology
    • /
    • v.17 no.3
    • /
    • pp.178-182
    • /
    • 2008
  • Planar type micro catalytic combustible gas sensor was developed by using nano crystalline $SnO_2$ Pt thin film as micro heater was deposited by thermal evaporation method on the alumina substrate. The thickness of the Pt heater was around 160 nm. The sensor showed high reliability with prominent selectivity against various gases(Co, $C_3H_8,\;CH_4$) at low operating temperature($156^{\circ}C$). The sensor with nano crystalline $SnO_2$ showed higher sensitivity than that without nano crystalline $SnO_2$. This can be explained by more active adsorption and oxidation of hydrogen by nano crystalline $SnO_2$ particles. The present planar-type catalytic combustible hydrogen sensor with nano crystalline $SnO_2$ is a good candidate for detection of hydrogen leaks.

Potentiometric CO2 gas sensor based on the thin film electrolyte of Li+ ion conductor (박막 리튬이온전도체를 이용한 전위차 CO2 가스센서)

  • Noh, Whyo-Sub;Choi, Gwang-Pyo;Song, Ho-Geun;Park, Jin-Seong
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.4
    • /
    • pp.258-264
    • /
    • 2005
  • Li+-ion conducting ($Li_{3}PO_{4}$) thin films with thickness of $0.3{\mu}m$, $0.65{\mu}$, $1.2{\mu}$ were deposited on $Al_{2}O_{3}$ substrate at room temperature by thermal evaporation. They were sintered at $700^{\circ}C$ and $800^{\circ}C$ for 2 hours, respectively. Reference electrode and sensing electrode were printed on Au-electrode by silk printing method. The EMF and the ${\Delta}EMF$/dec were increased with increasing the electrolyte thickness and sintering temperature. The sample sintered at $800^{\circ}C$ was shown a good response and recovery characteristics more than those sintered at $700^{\circ}C$. The Nernst's slop of 75 mV per decade was obtained at operating temperature of $500^{\circ}C$.

Highly Sensitive and Selective Gas Sensors Using Catalyst-Loaded SnO2 Nanowires

  • Hwang, In-Sung;Lee, Jong-Heun
    • Journal of Sensor Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.167-171
    • /
    • 2012
  • Ag- and Pd-loaded $SnO_2$ nanowire network sensors were prepared by the growth of $SnO_2$ nanowires via thermal evaporation, the coating of slurry containing $SnO_2$ nanowires, and dropping of a droplet containing Ag or Pd nanoparticles, and subsequent heat treatment. All the pristine, Pd-loaded and Ag-loaded $SnO_2$ nanowire networks showed the selective detection of $C_2H_5OH$ with low cross-responses to CO, $H_2$, $C_3H_8$, and $NH_3$. However, the relative gas responses and gas selectivity depended closely on the catalyst loading. The loading of Pd enhanced the responses($R_a/R_g$: $R_a$: resistance in air, $R_g$: resistance in gas) to CO and $H_2$ significantly, while it slightly deteriorated the response to $C_2H_5OH$. In contrast, a 3.1-fold enhancement was observed in the response to 100 ppm $C_2H_5OH$ by loading of Ag onto $SnO_2$ nanowire networks. The role of Ag catalysts in the highly sensitive and selective detection of $C_2H_5OH$ is discussed.

Special quality research by pulse transformer stabilization by high tension output module of medical ultra series laser II (산부인과용 $CO_2$ 연속형 레이저의 고압출력 모듈에 따른 펄스트랜스 안정화 특성연구(II))

  • Kim, Whi-Young
    • Journal of the Korea Computer Industry Society
    • /
    • v.8 no.1
    • /
    • pp.49-56
    • /
    • 2007
  • Various kind of laser had been used on addition to endoscope for obstetrics and gynecology, gas laser such as CO2 laser had been used mainly much in laparoscope surgical operation mainly Thermal effect of beam displays other result different component parts of cellular tissue and different close of a marketplace of laser beam and priority solidification of temperature increase consists in cellular tissue, and cutting or carbonization process happens and evaporation by breakdown of cellular tissue happens more than $300^{\circ}$. <중략> Ostabilization of pulse transformer by high tension output module of CO2analog laser for obstetrics and gynecology that accomplish marks of honor kind switching and accuracy is required, and stabilize with laser output applying Turn-off in existent hard switching forward converter, on city happened switching damage, damage increase of output diode station recovery special quality, parasitism shock, design and result that manufacture, brought result that improve than existing product. Will be bought to get into superior result if supplement as systematic late.

  • PDF

Physical Properties of Cd2GeSe4 and Cd2GeSe4:Co2+ Thin Films Grown by Thermal Evaporation (진공증착법에 의해 제작된 Cd2GeSe4와 Cd2GeSe4:Co2+ 박막의 물리적 특성)

  • Lee, Jeoung-Ju;Sung, Byeong-Hoon;Lee, Jong-Duk;Park, Chang-Young;Kim, Kun-Ho
    • Journal of the Korean Vacuum Society
    • /
    • v.18 no.6
    • /
    • pp.459-467
    • /
    • 2009
  • $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were prepared on indium-tin-oxide(ITO)-coated glass substrates by using thermal evaporation. The crystallization was achieved by annealing the as-deposited films in flowing nitrogen. X-ray diffraction spectra showed that the $Cd_2GeSe_4$ and the $Cd_2GeSe_4:Co^{2+}$ films were preferentially grown along the (113) orientation. The crystal structure was rhomohedral(hexagonal) with lattice constants of $a=7.405\;{\AA}$ and $c=36.240\;{\AA}$ for $Cd_2GeSe_4$ and $a=7.43\;{\AA}$ and $c=36.81\;{\AA}$ for $Cd_2GeSe_4:Co^{2+}$ films. From the scanning electron microscope images, the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were plated, and the grain size increased with increasing annealing temperature. The optical energy band gap, measured at room temperature, of the as-deposited $Cd_2GeSe_4$ films was 1.70 eV and increased to about 1.74 eV and of the as-deposited $Cd_2GeSe_4:Co^{2+}$ films was 1.79 eV and decreased to about 1.74 eV upon annealing in flowing nitrogen at temperatures from $200^{\circ}C$ to $500^{\circ}C$. The dynamical behavior of the charge carriers in the $Cd_2GeSe_4$ and $Cd_2GeSe_4:Co^{2+}$ films were investigated by using the photoinduced discharge characteristics technique.

Small Molecular Solar Cells toward Improved Efficiency and Stability

  • Kim, Ji-Hwan;Kim, Hyo-Jeong;Jeong, Won-Ik;Kim, Tae-Min;Lee, Yeong-Eun;Kim, Se-Yong;Kim, Jang-Ju
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.73-73
    • /
    • 2011
  • We will report a few methods to improve the efficiency and stability in small molecule based organic solar cells, including the formation of bulk heterojunctions (BHJs) through alternative thermal deposition (ATD), the use of a micro-cavity structure and interface modifications. By ATD which is a simple modification of conventional thermal evaporation, the thicknesses of alternative donor and acceptor layers were precisely controlled down to 0.1 nm, which is critical to form BHJs. The formation of a BHJ in copper(II) phthalocyanine (CuPc) and fullerene (C60) systems was confirmed by AFM, GISAXS and absorption measurements. From analysis of the data, we found that the CuPc|C60 films fabricated by ATD were composed of the nanometer sized disk shaped CuPc nano grains and aggregated C60, which explains the phase separation of CuPc and C60. On the other hand, the co-deposited CuPc:C60 films did not show the existence of separated CuPc nano grains in the CuPc:C60 matrix. The OPV cells fabricated using the ATD method showed significantly enhanced power conversion efficiency compared to the co-deposited OPV cells under a same composition [1]. We will also present by numerical simulation that adoption of microcavity structure in the planar heterojunction can improve the short circuit current in single and tandem OSCs [2]. Interface modifications also allowed us to achieve high efficiency and high stability OSCs.

  • PDF

Calculation of non-condensable gases released in a seawater evaporating process (해수 증발과정에서의 기체방출량 계산)

  • Jeong, Kwang-Woon;Chung, Hanshik;Jeong, Hyomin;Choi, Soon-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.41 no.3
    • /
    • pp.182-190
    • /
    • 2017
  • All liquids contain a small amount of gaseous components and the amount of gases dissolved in a liquid is in accordance with Henry's Law. In a multi-stage thermal-type seawater desalination plant, as the supplied seawater undergoes variations in temperature and pressure in each evaporator, the gases dissolved in the seawater are discharged from the liquid. The discharged gases are carbon dioxide, nitrogen, oxygen, and argon, and these emitted gases are non-condensable. From the viewpoint of convective heat transfer, the evaluation of non-condensable gas released during a vacuum evaporation process is a very important design factor because the non-condensable gases degrade the performance of the cooler. Furthermore, in a thermal-type seawater desalination plant, most evaporators operate under vacuum, which maintained through vacuum system such as a steam ejector or a vacuum pump. Therefore, for the proper design of a vacuum system, estimating the non-condensable gases released from seawater is highly crucial. In the study, non-condensable gases released in a thermal-type seawater desalination plant were calculated quantitatively. The calculation results showed that the NCG releasing rate decreased as the stage comes getting a downstream and it was proportional to the freshwater production rate.

Application of femtosecond laser hole drilling with vibration for thin Invar alloy using fine metal mask in AMOLED manufacturing process (AMOLED 제조공정에 사용되는 Fine Metal Mask 용 얇은 Invar 합금의 진동자를 이용한 펨토초 레이저 응용 홀 드릴링)

  • Choi, Won-Suk;Kim, Hoon-Young;Shin, Young-Gwan;Choi, Jun-ha;Chang, Won-Seok;Kim, Jae-Gu;Cho, Sung-Hak;Choi, Doo-Sun
    • Design & Manufacturing
    • /
    • v.14 no.3
    • /
    • pp.44-49
    • /
    • 2020
  • One of display trends today is development of high pixel density. To get high PPI, a small size of pixel must be developed. RGB pixel is arranged by evaporation process which determines pixel size. Normally, a fine metal mask (FMM; Invar alloy) has been used for evaporation process and it has advantages such as good strength, and low thermal expansion coefficient at low temperature. A FMM has been manufactured by chemical etching which has limitation to controlling the pattern shape and size. One of alternative method for patterning FMM is laser micromachining. Femtosecond laser is normally considered to improve those disadvantages for laser micromachining process due to such short pulse duration. In this paper, a femtosecond laser drilling for thickness of 16 ㎛ FMM is examined. Additionally, we introduce experimental results for controlling taper angle of hole by vibration module adapted in laser system. We used Ti:Sapphire based femtosecond laser with attenuating optics, co-axial illumination, vision system, 3-axis linear stage and vibration module. By controlling vibration amplitude, entrance and exit diameters are controllable. Using vibrating objective lens, we can control taper angle when femtosecond laser hole drilling by moving focusing point. The larger amplitude of vibration we control, the smaller taper angle will be carried out.

Effect of Deposition Rate on $MgB_2$ Thin Films Growth by Co-deposition Method (동시증착법에 의해 성장된 붕화마그네슘 박막의 증착속도에 따른 효과)

  • Park, Sung-Chang;Kang, Seong-Gu;Jeong, Dae-Gil;Chung, Jun-Ki;Lim, Yeong-Jin;Kim, Chan-Joong;Kim, Cheol-Jin
    • Progress in Superconductivity
    • /
    • v.10 no.1
    • /
    • pp.29-34
    • /
    • 2008
  • Magnesium diboride ($MgB_2$) is an inexpensive and simple superconductor. This material was first synthesized and its structure confirmed in 1953 but its superconducting properties were not discovered until 2001 when they caused great excitement. In this study, superconducting $MgB_2$ thin films on the r-$Al_{2}O_3$ substrates have been grown by the combination of radio frequency magnetron sputtering of B and thermal evaporation of Mg. The deposition conditions were varied by changing deposition rate. Before the co-deposition of Mg and B, the deposition rates of each element have been measured separately. The $MgB_2$ layers had 400nm in thickness and superconducting transition temperatures have been measured around $\sim$38.6K. Superconducting properties have been measured by PPMS, XRD, and SEM.

  • PDF