• Title/Summary/Keyword: thermal change

Search Result 3,160, Processing Time 0.035 seconds

Removal of Fluoride Using Thermally Treated Activated Alumina (고온 처리된 활성알루미나를 이용한 불소 제거)

  • Park, Seong-Jik;Kim, Jae-Hyeon;Lee, Chang-Gu;Park, Jeong-Ann;Choi, Nag-Choul;Kim, Song-Bae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.10
    • /
    • pp.986-993
    • /
    • 2010
  • In this study, sorption characteristics of thermally treated activated alumina (AA) for fluoride were investigated. Sorption experiments have been conducted in equilibrium and kinetic batch conditions. Also, effects of solution pH and anions on fluoride removal have been observed. The properties of thermally treated ( $700^{\circ}C$) activated alumina (AA700) and untreated activated alumina (UAA) were compared using field-emission scanning electron microscope, energy-dispersive spectrometry, X-ray diffractometer (XRD) analysis, and Brunauer-Emmett-Teller (BET) analysis. From the experiments using AA thermally treated at different temperatures (100, 300, 500, $700^{\circ}C$), it was found that at high fluoride concentrations (50, 100, 200 mg/L) the sorption capacity of thermally treated AA increased with increasing thermal treatment temperature. At an initial fluoride concentration of 200 mg/L, the sorption capacity of AA700 was 3.67 times greater than that of UAA. The BET analysis showed that the specific surface area of UAA was about 2 times larger than that of AA700. The XRD analysis indicated that UAA was composed of both boehmite (AlOOH) and bayerite ($Al(OH)_3$) while AA700 was $Al_2O_3$. The reason that fluoride sorption capacity of AA700 increased despite of decrease in specific surface area compared to UAA could be attributed to the change of crystal structure. The kinetic sorption test showed that fluoride sorption to AA700 arrived at equilibrium after 24 h. The equilibrium test demonstrated that the maximum sorption capacity of AA700 was 5.70 mg/g. Additional batch experiments indicated that fluoride sorption to AA700 was the highest at pH 7, decreasing at both acidic and basic solution pHs. Also, fluoride sorption to AA700 decreased in the presence of anions such as phosphate, nitrate, and carbonate. This study demonstrated that thermal treatment of AA at high temperature could increase its sorption capacity for fluoride.

Recent Progress in Air Conditioning and Refrigeration Research - A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2002 and 2003 - (공기조화, 냉동 분야의 최근 연구 동향 -2002년 및 2003년 학회지 논문에 대한 종합적 고찰 -)

  • Chung Kwang-Seop;Kim Min Soo;Kim Yongchan;Park Kyoung Kuhn;Park Byung-Yoon;Cho Keumnam
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.16 no.12
    • /
    • pp.1234-1268
    • /
    • 2004
  • A review on the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering in 2002 and 2003 has been carried out. Focus has been put on current status of research in the aspect of heating, cooling, air-conditioning, ventilation, sanitation and building environment/design. The conclusions are as follows. (1) Most of fundamental studies on fluid flow were related with heat transportation in diverse facilities. Drop formation and rivulet flow on solid surfaces were interesting topics related with condensation augmentation. Research on micro environment considering flow, heat transfer, humidity was also interesting to promote comfortable living environment. It can be extended considering biological aspects. Development of fans and blowers of high performance and low noise were continuing research topics. Well developed CFD technologies were widely applied for analysis and design of various facilities and their systems. (2) Heat transfer characteristics of enhanced finned tube heat exchangers and heat sinks were extensively investigated. Experimental studies on the boiling heat transfer, vortex generators, fluidized bed heat exchangers, and frosting and defrosting characteristics were also conducted. In addition, the numerical simulations on various heat exchangers were performed and reported to show heat transfer characteristics and performance of the heat exchanger. (3) A review of the recent studies shows that the performance analysis of heat pump have been made by various simulations and experiments. Progresses have been made specifically on the multi-type heat pump systems and other heat pump systems in which exhaust energy is utilized. The performance characteristics of heat pipe have been studied numerically and experimentally, which proves the validity of the developed simulation programs. The effect of various factors on the heat pipe performance has also been examined. Studies of the ice storage system have been focused on the operational characteristics of the system and on the basics of thermal storage materials. Researches into the phase change have been carried out steadily. Several papers deal with the cycle analysis of a few thermodynamic systems which are very useful in the field of air-conditioning and refrigeration. (4) Recent studies on refrigeration and air-conditioning systems have focused on the system performance and efficiency enhancement when new alternative refrigerants are applied. Heat transfer characteristics during evaporation and condensation are investigated for several tube shapes and new alternative refrigerants including natural refrigerants. Efficiency of various compressors and performance of new expansion devices are also dealt with for better design of refrigeration/air conditioning system. In addition to the studies related with thermophysical properties of refrigerant mixtures, studies on new refrigerants are also carried out. It should be noted that the researches on two-phase flow are constantly carried out. (5) A review of the recent studies on absorption refrigeration system indicates that heat and mass transfer enhancement is the key factor in improving the system performance. Various experiments have been carried out and diverse simulation models have been presented. Study on the small scale absorption refrigeration system draws a new attention. Cooling tower was also the research object in the respect of enhancement its efficiency, and performance analysis and optimization was carried out. (6) Based on a review of recent studies on indoor thermal environment and building service systems, it is noticed that research issues have mainly focused on several innovative systems such as personal environmental modules, air-barrier type perimeterless system with UFAC, radiant floor cooling system, etc. New approaches are highlighted for improving indoor environmental conditions and minimizing energy consumption, various activities of building energy management and cost-benefit analysis for economic evaluation.

Thermographic Assessment on Temperature Change of Eye Surface in Cataract Surgery Observation (백내장수술 안에서 열화상카메라를 이용한 안구표면 온도의 변화)

  • Park, Chang Won;An, Young-Ju;Kim, Hyojin
    • The Korean Journal of Vision Science
    • /
    • v.20 no.4
    • /
    • pp.497-504
    • /
    • 2018
  • Purpose : The purpose of this study was to investigate the temperature changes of the ocular surface before and after cataract surgery using thermography of a thermal imaging camera. Methods : The study included 75 patients (75 eyes) aged from 50 to 79 years who underwent cataract surgery. In the past, those who underwent corneal-related surgery, wearing contact lens, disorder of tear secretion and taking medication for systemic disease were excluded from this study. The temperature changes of the eyeball surface were measured using a thermal imager (Cox CX series, Answer, Korea) following Tear Break Up Time (TBUT) test, Mcmonnies questionnaire and Schirmer's Test in real time, Results : While the temperature of preoperative ocular surface was $35.20{\pm}0.54^{\circ}C$ and that of postoperative temperature was $35.30{\pm}0.53^{\circ}C$, the difference was not significant. The temperature changes in the ocular surface were statistically significant at $-0.12{\pm}0.08{\Delta}$ ($^{\circ}C/sec$) before the surgery and $-0.18{\pm}0.07{\Delta}$ ($^{\circ}C/sec$) after the surgery. In comparison of the age groups, it was shown that the changes in the surface temperature before the surgery were from $-0.19{\pm}0.05{\Delta}$ ($^{\circ}C/sec$) to $-0.14{\pm}0.09{\Delta}$ ($^{\circ}C/sec$) in the 50s group, and from $-0.12{\pm}0.08{\Delta}$ ($^{\circ}C/sec$) to $-0.15{\pm}0.07{\Delta}$ ($^{\circ}C/sec$) in 60s group, and $-0.18{\pm}0.07{\Delta}$ ($^{\circ}C$) to $-0.12{\pm}0.08{\Delta}/sec$) in the 70s group, showing significant changes in the ocular surface temperature at all ages. Conclusion : Following the cataract surgery, all the indicators of dry eye syndrome were decreased, and eye surface temperature changes were significant. The thermography technique of the ocular surface would be expected to be useful for the evaluation of various dry eye syndromes because it is easy to evaluate dry eye syndrome noninvasively and can be quantified.

Geology of Athabasca Oil Sands in Canada (캐나다 아사바스카 오일샌드 지질특성)

  • Kwon, Yi-Kwon
    • The Korean Journal of Petroleum Geology
    • /
    • v.14 no.1
    • /
    • pp.1-11
    • /
    • 2008
  • As conventional oil and gas reservoirs become depleted, interests for oil sands has rapidly increased in the last decade. Oil sands are mixture of bitumen, water, and host sediments of sand and clay. Most oil sand is unconsolidated sand that is held together by bitumen. Bitumen has hydrocarbon in situ viscosity of >10,000 centipoises (cP) at reservoir condition and has API gravity between $8-14^{\circ}$. The largest oil sand deposits are in Alberta and Saskatchewan, Canada. The reverves are approximated at 1.7 trillion barrels of initial oil-in-place and 173 billion barrels of remaining established reserves. Alberta has a number of oil sands deposits which are grouped into three oil sand development areas - the Athabasca, Cold Lake, and Peace River, with the largest current bitumen production from Athabasca. Principal oil sands deposits consist of the McMurray Fm and Wabiskaw Mbr in Athabasca area, the Gething and Bluesky formations in Peace River area, and relatively thin multi-reservoir deposits of McMurray, Clearwater, and Grand Rapid formations in Cold Lake area. The reservoir sediments were deposited in the foreland basin (Western Canada Sedimentary Basin) formed by collision between the Pacific and North America plates and the subsequent thrusting movements in the Mesozoic. The deposits are underlain by basement rocks of Paleozoic carbonates with highly variable topography. The oil sands deposits were formed during the Early Cretaceous transgression which occurred along the Cretaceous Interior Seaway in North America. The oil-sands-hosting McMurray and Wabiskaw deposits in the Athabasca area consist of the lower fluvial and the upper estuarine-offshore sediments, reflecting the broad and overall transgression. The deposits are characterized by facies heterogeneity of channelized reservoir sands and non-reservoir muds. Main reservoir bodies of the McMurray Formation are fluvial and estuarine channel-point bar complexes which are interbedded with fine-grained deposits formed in floodplain, tidal flat, and estuarine bay. The Wabiskaw deposits (basal member of the Clearwater Formation) commonly comprise sheet-shaped offshore muds and sands, but occasionally show deep-incision into the McMurray deposits, forming channelized reservoir sand bodies of oil sands. In Canada, bitumen of oil sands deposits is produced by surface mining or in-situ thermal recovery processes. Bitumen sands recovered by surface mining are changed into synthetic crude oil through extraction and upgrading processes. On the other hand, bitumen produced by in-situ thermal recovery is transported to refinery only through bitumen blending process. The in-situ thermal recovery technology is represented by Steam-Assisted Gravity Drainage and Cyclic Steam Stimulation. These technologies are based on steam injection into bitumen sand reservoirs for increase in reservoir in-situ temperature and in bitumen mobility. In oil sands reservoirs, efficiency for steam propagation is controlled mainly by reservoir geology. Accordingly, understanding of geological factors and characteristics of oil sands reservoir deposits is prerequisite for well-designed development planning and effective bitumen production. As significant geological factors and characteristics in oil sands reservoir deposits, this study suggests (1) pay of bitumen sands and connectivity, (2) bitumen content and saturation, (3) geologic structure, (4) distribution of mud baffles and plugs, (5) thickness and lateral continuity of mud interbeds, (6) distribution of water-saturated sands, (7) distribution of gas-saturated sands, (8) direction of lateral accretion of point bar, (9) distribution of diagenetic layers and nodules, and (10) texture and fabric change within reservoir sand body.

  • PDF

Comparative Analysis of the Effects of Heat Island Reduction Techniques in Urban Heatwave Areas Using Drones (드론을 활용한 도시폭염지역의 열섬 저감기법 효과 비교 분석)

  • Cho, Young-Il;Yoon, Donghyeon;Shin, Jiyoung;Lee, Moung-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_3
    • /
    • pp.1985-1999
    • /
    • 2021
  • The purpose of this study is to apply urban heat island reduction techniques(green roof, cool roof, and cool pavements using heat insulation paint or blocks) recommended by the Environmental Protection Agency (EPA) to our study area and determine their actual effects through a comparative analysis between land cover objects. To this end, the area of Mugye-ri, Jangyu-myeon, Gimhae, Gyeongsangnam-do was selected as a study area, and measurements were taken using a drone DJI Matrice 300 RTK, which was equipped with a thermal infrared sensor FLIR Vue Pro R and a visible spectrum sensor H20T 1/2.3" CMOS, 12 MP. A total of nine heat maps, land cover objects (711) as a control group, and heat island reduction technique-applied land covering objects (180) were extracted every 1 hour and 30 minutes from 7:15 am to 7:15 pm on July 27. After calculating the effect values for each of the 180 objects extracted, the effects of each technique were integrated. Through the analysis based on daytime hours, the effect of reducing heat islands was found to be 4.71℃ for cool roof; 3.40℃ for green roof; and 0.43℃ and -0.85℃ for cool pavements using heat insulation paint and blocks, respectively. Comparing the effect by time period, it was found that the heat island reduction effect of the techniques was highest at 13:00, which is near the culmination hour, on the imaging date. Between 13:00 and 14:30, the efficiency of temperature reduction changed, with -8.19℃ for cool roof, -5.56℃ for green roof, and -1.78℃ and -1.57℃ for cool pavements using heat insulation paint and blocks, respectively. This study was a case study that verified the effects of urban heat island reduction techniques through the use of high-resolution images taken with drones. In the future, it is considered that it will be possible to present case studies that directly utilize micro-satellites with high-precision spatial resolution.

Optimization of Modified Starches on Retrogradation of Korean Rice Cake(Garaeduk) (가래떡의 노화 억제에 관한 변형 전분의 최적화)

  • Park, Hyun-Jeong;Song, Jae-Chul;Shin, Wan-Chul
    • The Korean Journal of Food And Nutrition
    • /
    • v.19 no.3
    • /
    • pp.279-287
    • /
    • 2006
  • This study was carried out to investigate the influences of modified starches on suppression of retrogradation in Korean rice cake for their optimization, Garaeduk. Based upon studying Avrami equation, the Avrami exponent n value of all the experiment samples was found to be 1.03 ${\sim}$ 1.37 in the influence of modified starches on retrogradation of the rice cake. This means that the retrogradation of the Korean rice cake occurred instantly after the crystallization of starch particles in the Korean rice cake formulated by modified starches. The highest Avrami exponent n value was indicated in the control sample. The rate constant k of retrogradation in the Korean rice cake formulated by modified starches showed comparatively low and appeared to be the lowest in the Korean rice cake formulated by SHPP. This tendency was shown well in the time constant(1/k) of retrogradation velocity. According to the DSC analysis, the onset temperature of gelatinization in thermal characteristics showed somewhat high in case of addition of modified starch into the Korean rice cake on storage time and the SHPP was slowly gone up. In peak temperature of gelatinization in thermal characteristics of the DSC analysis, SSOS and ASA were increased a little in comparison with the control. The control was comparatively high increase. Melting enthalphy of all samples added with modified starches (SSOS: 21.1${\rightarrow}$23.7${\rightarrow}$24.1, ASA: 21.1${\rightarrow}$24.8${\rightarrow}$25.4) appeared to be lower than that of the Korean rice cake without modified starches(21.2${\rightarrow}$26.1${\rightarrow}$27.1). The Korean rice cake added with SHPP was shown to be the lowest in the increasing rate of melting enthalpy(20.9${\rightarrow}$21.4${\rightarrow}$22.1). Heat spreadability of all the samples in Martin melting diameter was revealed to be good in order of control, ASA, SSOS, SHPP and especially the Korean rice cake added with SHPP was shown to be the best in heat spreadability. In color, sensory examination and textural characteristic of the Korean rice cake added with modified starches, the L$^*$value was not changed practically with the storage time and seemed to be stable. The a$^*$ value of the samples was followed by control(2.21${\rightarrow}$5.34: 141.6%), ASA (2.01${\rightarrow}$4.22: 110.0%), SSOS (2.78${\rightarrow}$4.87: 75.2%) and SHPP (2.12${\rightarrow}$3.40: 60.4%) in order of color change. Also the b$^*$ value of the samples was followed by control(4.32${\rightarrow}$6.35: 47.0%), ASA (4.66${\rightarrow}$5.73: 23.0%), SSOS (4.90${\rightarrow}$5.89: 20.2%) and SHPP (4.89${\rightarrow}$5.12: 4.7%) and there was the least (or no) color change with the SHPP. Textural characteristics of samples was shown to be the highest in case of modified starch addition and especially SHPP appeared to be the best in texture.

A Thermal Time-Driven Dormancy Index as a Complementary Criterion for Grape Vine Freeze Risk Evaluation (포도 동해위험 판정기준으로서 온도시간 기반의 휴면심도 이용)

  • Kwon, Eun-Young;Jung, Jea-Eun;Chung, U-Ran;Lee, Seung-Jong;Song, Gi-Cheol;Choi, Dong-Geun;Yun, Jin-I.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2006
  • Regardless of the recent observed warmer winters in Korea, more freeze injuries and associated economic losses are reported in fruit industry than ever before. Existing freeze-frost forecasting systems employ only daily minimum temperature for judging the potential damage on dormant flowering buds but cannot accommodate potential biological responses such as short-term acclimation of plants to severe weather episodes as well as annual variation in climate. We introduce 'dormancy depth', in addition to daily minimum temperature, as a complementary criterion for judging the potential damage of freezing temperatures on dormant flowering buds of grape vines. Dormancy depth can be estimated by a phonology model driven by daily maximum and minimum temperature and is expected to make a reasonable proxy for physiological tolerance of buds to low temperature. Dormancy depth at a selected site was estimated for a climatological normal year by this model, and we found a close similarity in time course change pattern between the estimated dormancy depth and the known cold tolerance of fruit trees. Inter-annual and spatial variation in dormancy depth were identified by this method, showing the feasibility of using dormancy depth as a proxy indicator for tolerance to low temperature during the winter season. The model was applied to 10 vineyards which were recently damaged by a cold spell, and a temperature-dormancy depth-freeze injury relationship was formulated into an exponential-saturation model which can be used for judging freeze risk under a given set of temperature and dormancy depth. Based on this model and the expected lowest temperature with a 10-year recurrence interval, a freeze risk probability map was produced for Hwaseong County, Korea. The results seemed to explain why the vineyards in the warmer part of Hwaseong County have been hit by more freeBe damage than those in the cooler part of the county. A dormancy depth-minimum temperature dual engine freeze warning system was designed for vineyards in major production counties in Korea by combining the site-specific dormancy depth and minimum temperature forecasts with the freeze risk model. In this system, daily accumulation of thermal time since last fall leads to the dormancy state (depth) for today. The regional minimum temperature forecast for tomorrow by the Korea Meteorological Administration is converted to the site specific forecast at a 30m resolution. These data are input to the freeze risk model and the percent damage probability is calculated for each grid cell and mapped for the entire county. Similar approaches may be used to develop freeze warning systems for other deciduous fruit trees.

Design of the Condenser and Automation of a Solar Powered Water Pump (태양열 물펌프의 운전 자동화 설계)

  • Kim Y. B.;Son J. G.;Lee S. K.;Kim S. T.;Lee Y. K.
    • Journal of Animal Environmental Science
    • /
    • v.10 no.3
    • /
    • pp.141-154
    • /
    • 2004
  • The solar powered water pump is very ideal equipment because solar power is more intensive when the water is more needed in summer and it is very helpful in the rural area, in which the electrical power is not available. The average so]ar radiation energy is 3.488 kWh/($m^2{\cdot}day$) in Korea. In this study, the automatic control logic and system of the water pump driven by the radiation energy were studied, designed, assembled, tested and analyzed for realizing the solar powered water pump. The experimental system was operated automatically and the cycle was continued. The average quantity of the water pumped per cycle was about 5,320 cc. The cycle time was about 4.9 minutes. The thermal efficiency of the system was about $0.030\%$. The pressure level of the n-pentane vapour in flash tank was 150$\%$450 hPa(gauge) which was set by the computer program for the control of the vapour supply. The pressure in the condenser and air tank during cycles was maintained as about 600 hPa and 1,200 hPa respectively. The water could be pumped by the amount of 128kg/($m^2{\cdot}day$) with the efficiency of $0.1\%$ and the pumping head of 10 m for the average solar energy in Korea.

  • PDF

A Study of the Influence of Short-Term Air-Sea Interaction on Precipitation over the Korean Peninsula Using Atmosphere-Ocean Coupled Model (기상-해양 접합모델을 이용한 단기간 대기-해양 상호작용이 한반도 강수에 미치는 영향 연구)

  • Han, Yong-Jae;Lee, Ho-Jae;Kim, Jin-Woo;Koo, Ja-Yong;Lee, Youn-Gyoun
    • Journal of the Korean earth science society
    • /
    • v.40 no.6
    • /
    • pp.584-598
    • /
    • 2019
  • In this study, the effects of air-sea interactions on precipitation over the Seoul-Gyeonggi region of the Korean Peninsula from 28 to 30 August 2018, were analyzed using a Regional atmosphere-ocean Coupled Model (RCM). In the RCM, a WRF (Weather Research Forecasts) was used as the atmosphere model whereas ROMS (Regional Oceanic Modeling System) was used as the ocean model. In a Regional Single atmosphere Model (RSM), only the WRF model was used. In addition, the sea surface temperature data of ECMWF Reanalysis Interim was used as low boundary data. Compared with the observational data, the RCM considering the effect of air-sea interaction represented that the spatial correlations were 0.6 and 0.84, respectively, for the precipitation and the Yellow Sea surface temperature in the Seoul-Gyeonggi area, which was higher than the RSM. whereas the mean bias error (MBE) was -2.32 and -0.62, respectively, which was lower than the RSM. The air-sea interaction effect, analyzed by equivalent potential temperature, SST, dynamic convergence fields, induced the change of SST in the Yellow Sea. In addition, the changed SST caused the difference in thermal instability and kinematic convergence in the lower atmosphere. The thermal instability and convergence over the Seoul-Gyeonggi region induced upward motion, and consequently, the precipitation in the RCM was similar to the spatial distribution of the observed data compared to the precipitation in the RSM. Although various case studies and climatic analyses are needed to clearly understand the effects of complex air-sea interaction, this study results provide evidence for the importance of the air-sea interaction in predicting precipitation in the Seoul-Gyeonggi region.

An analytical study on the fire characteristics of the small tunnel with large smoke exhaust port (대배기구 배연방식을 적용한 소형차 전용 터널의 화재특성에 관한 해석적 연구)

  • Yoo, Ji-Oh;Kim, Jin-Su;Rhee, Kwan-Seok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.3
    • /
    • pp.375-388
    • /
    • 2017
  • In order to solve the traffic congest and environmental issues, small-cross section tunnel for small car only is increasing, but there is not standard for installation of disaster prevention facility. In this study, in order to investigate the behavioral characteristics of thermal environment and smoke in a small cross section tunnels with a large port exhaust ventilation system, the A86, the U-Smartway and the Seobu moterawy tunnel, Temperature and CO concentration in case of fire according to cross sectional area, heat release rate and exhaust air flow rate were analyzed by numerical analysis and the results were as follows. As the cross-sectional area of the tunnel decreases, the temperature of the fire zone increases and the rate of temperature rise is not significantly affected by heat release rate. However, there is a difference depending on the change of the exhaust air flow rate. In the case of applying the exhaust air flow rate $Q_3+2.5Ar$ of the large port exhaust ventilation system, the temperature of the fire zone was 7.1 times for A86 ($Ar=25.3m^2$) and 5.4 time for U-smartway ($Ar=37.32m^2$) by Seobu moterway tunnel ($Ar=46.67m^2$). The CO concentration of fire zone also showed the same tendency. The A86 tunnels were 10.7 times and the U-Smartways were 9.5 times more than the Seobu moterway. Therefore, in the case of a small section tunnel, the thermal environment and noxious gas concentration due to the reduction of the cross-sectional area are expected to increase significantly more than the cross-sectional reduction rate.