• Title/Summary/Keyword: thermal brightness

Search Result 128, Processing Time 0.023 seconds

Chemically modulated polystyrene surface using various ion beam exposure time for liquid crystal alignment of high brightness mobile display (고휘도 휴대용 디스플레이를 위한 액정소자의 폴리스타일렌 배향막에 관한 연구)

  • Cho, Myung-Hyun;Lee, Ho-Young
    • Journal of Satellite, Information and Communications
    • /
    • v.9 no.3
    • /
    • pp.22-26
    • /
    • 2014
  • This paper introduces homogeneous liquid crystal (LC) orientations on chemically modulated polystyrene (PS) surfaces using various ion beam (IB) exposure time. Transparent PS was replaced with conventional polyimde material. Especially, PS has higher transparent property than conventional polyimide thin film and it means PS is more suitable material for producing high brightness mobile LCD. As a non-contact process, IB bombardment process induced LC orientation in the direction parallel to the IB process. Through x-ray photoelectron spectroscopy, it was shown that the chemical compositional changes of the IB-irradiated PS surfaces were determined as a function of IB exposure time. Using this analysis, the optimal IB bombardment condition was determined at IB exposure time of up to 15 s. Moreover, thermal stability on IB-irradiated PS surfaces were carried out which showed that a relatively high IB exposure time induced a thermally stable LC alignment property. And it has a highly potential of mobile high transparent mobile LCD such as smart phone display and mobile information device.

Analysis of Temperature Change by Forest Growth for Mitigation of the Urban Heat Island (도시열섬 완화를 위한 녹지증가에 따른 온도변화 분석)

  • Yun, Hee Cheon;Kim, Min Gyu;Jung, Kap Yong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.143-150
    • /
    • 2013
  • Recently, environmental issues such as climate warming, ozone layer depletion, reduction of tropical forests and desertification are emerging as global environmental problems beyond national problems. And international attention and effort have been carried out in many ways to solve these problems. In this study, the growth of green was calculated quantitatively using the technique of remote sensing and temperature change was figured out through temperature extraction in the city. The land-cover changes and thermal changes for research areas were analyzed using Landsat TM images on May 2002 and May 2009. Surface temperature distribution was calculated using spectral degree of brightness of Band 6 that was Landsat TM thermal infrared sensor to extract the ground surface temperature in the city. As a result of research, the area of urban green belt was increased by $2.87km^2$ and the ground surface temperature decreased by $0.6^{\circ}C{\sim}0.8^{\circ}C$ before and after tree planting projects. Henceforth, if the additional study about temperature of downtown is performed based on remote sensing and measurement data, it will contribute to solve the problems about the urban environment.

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8 (일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증)

  • Lim, Hyunkwang;Choi, Myungje;Kim, Mijin;Kim, Jhoon;Chan, P.W.
    • Korean Journal of Remote Sensing
    • /
    • v.32 no.6
    • /
    • pp.681-691
    • /
    • 2016
  • Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.

The field emission characteristics of an oxidized porous polysilicon field emitter using Pt/Ti emitter-electrode (Pt/Ti 전극을 사용한 산하된 다공질 폴리 실리콘 전계방출소자의 특성)

  • Han Sang-Kug;Park Keun-Yong;Choi Sie-Young
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.6 s.336
    • /
    • pp.23-30
    • /
    • 2005
  • In this paper, OPPS(oxidized porous poly-silicon) field emitters were fabricated by using various emitter-electrode metal and these electron emission characteristics were investigated for different thermal annealing effects. The addressed OPPS field emitter with Pt/Ti emitter electrode annealed at $300^{\circ}C$-1hr showed the efficiency of $2.98\%$ at $V_{ps}$=12 V and one annealed at $350^{\circ}C$-1hr showed the highest efficiency of $3.37\%$at $V_{ps}$=16V. They are resulted from the improvement of interfacial contact characteristics of thin emitter metal to an oxidized porous poly-silicon and the decrease of electrical resistance of emitter metal. The brightness of the OPPS field emitter increases linearly in $V_{ps}$ and after oxidation process for $900^{\circ}C$-50min, the brightness of the OPPS field emitter with the as-deposited Pt/Ti emitter electrode was 3600 cd/$m^2$ at the $V_{ps}$=15 V, 6260 cd/$m^2$ at the $V_{ps}$=20 V. Thermal treatment improved the adhesion between the Ti buffer layer and the oxidized porous poly-silicon and also played an important role in the uniform distribution of electric field to the emitter electrode.

Study on the Evaluation of Thermal Damage According to the Manufacturing Conditions of Korean Paper (한지의 제조 조건에 따른 열 손상 평가 연구)

  • Kim, Ji Won;Park, Se Rin;Han, Ki Ok;Jeong, Seon Hwa
    • Journal of Conservation Science
    • /
    • v.37 no.6
    • /
    • pp.648-658
    • /
    • 2021
  • In this study, we aimed to analyze the chemical changes that occur in Korean paper in an accelerated deterioration environment of 105℃. We selected the Korean paper produced with different types of cooking agents (plant lye, Na2CO3) and during different manufacturing seasons (winter, summer). The degree of deterioration of the Korean paper was confirmed by measuring the brightness, yellowness, and pH level, and the degree of change in each vibrational region of cellulose as deterioration progressed through infrared (FT-IR) spectroscopy. The FT-IR analysis showed that, as deterioration progressed, the absorbance of the amorphous region in cellulose decreased, whereas the absorbance of the crystalline region slightly increased. X-Ray diffraction (XRD) analysis and Raman spectroscopy were performed to verify the changes in the crystalline and amorphous regions in cellulose indicated by the FT-IR results. Furthermore, the crystallinity index (CI) was calculated; it showed a slight increase after deterioration; therefore, CI was confirmed to follow the same trend as that observed for absorbance in the FT-IR results. In addition, as a result of Raman spectroscopic analysis, the degree of decomposition of the amorphous region in the cellulose under the manufacturing conditions was confirmed by the fluorescence measured after the deterioration.

Properties of High Power Flip Chip LED Package with Bonding Materials (접합 소재에 따른 고출력 플립칩 LED 패키지 특성 연구)

  • Lee, Tae-Young;Kim, Mi-Song;Ko, Eun-Soo;Choi, Jong-Hyun;Jang, Myoung-Gi;Kim, Mok-Soon;Yoo, Sehoon
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2014
  • Flip chip bonded LED packages possess lower thermal resistance than wire bonded LED packages because of short thermal path. In this study, thermal and bonding properties of flip chip bonded high brightness LED were evaluated for Au-Sn thermo-compression bonded LEDs and Sn-Ag-Cu reflow bonded LEDs. For the Au-Sn thermo-compression bonding, bonding pressure and bonding temperature were 50 N and 300oC, respectively. For the SAC solder reflow bonding, peak temperature was $255^{\circ}C$ for 30 sec. The shear strength of the Au-Sn thermo-compression joint was $3508.5gf/mm^2$ and that of the SAC reflow joint was 5798.5 gf/mm. After the shear test, the fracture occurred at the isolation layer in the LED chip for both Au-Sn and SAC joints. Thermal resistance of Au-Sn sample was lower than that of SAC bonded sample due to the void formation in the SAC solder.

Effect of Thermal Environment and Illuminance on the Occupants Works based on the Electroencephalogram and Electrocardiogram Analysis (뇌파와 심전도 분석을 기반으로 한 온열환경 및 조도가 재실자의 업무에 미치는 영향)

  • Kim, Hyung-Sun;Lim, Jae-Hyun;Kim, Hyoung-Tae;Kim, Hyoung-Sik;Kuwak, Won-Tack;Kim, Jin Ho
    • Science of Emotion and Sensibility
    • /
    • v.17 no.3
    • /
    • pp.95-106
    • /
    • 2014
  • This research analyzed biosignals associated with the change of emotion from lighting felt by the occupants and task type under various indoor thermal environments and illuminance, and examined the biosignals' impacts on work. To this end, the indoor thermal environment was constructed on the basis of PMV (predicted mean vote) index value, and various indoor environments were created by changing the brightness of LED stands. In this manner, a variety of indoor environments were constructed, and experiments were carried out. This research evaluates the sensibility response to lighting through a questionnaire survey in the given environment and incorporates different types of error searches. In this way, changes were analyzed by measuring electroencephalogram (EEG) and electrocardiograms (ECG). As a result, all biosignals on the task type showed significant differences from the thermal environment change. When PMV index value was 0.8 (temperature: $25^{\circ}C$, humidity: 50 %), concentration and attention were the most activated. However, the biosignals did not show significant differences from the illuminance change. Concentration on an occupant's work capability was confirmed to be closely related to the thermal environment. As for the subjective emotional response to lighting, the occupants felt comfort as illuminance was lower, while they felt discomfort as illuminance was higher. However, there were no significant differences from the thermal environment change.

A Study on Environmental Standards of School Building (교사환경기준에 관한 연구)

  • Hong, Seok-Pyo;Park, Young-Soo
    • The Journal of Korean Society for School & Community Health Education
    • /
    • v.1 no.1
    • /
    • pp.11-43
    • /
    • 2000
  • The purpose of this study was, through analyzing the previous researches, to grasp the present status of environment of school building(ESB), research the sundry records of each element and, through comparative analysis of the standard of ESB in Korea, the United States, and Japan, select the normative standard of ESB, to clarify the point at issue presented in Regulation of Construction & facility Management for Elementary and and Secondary School in Korea, and to suggest an alternative preliminary standard of ESB. To carry out a research for this purpose, these were required: 1. to investigate the existing present status of ESB, 2. to make a comparative analysis of the standard of ESB in each country, 3. to suggest the normative standard of preliminary standard of ESB, 4. to analyze the controversial points of the standard of ESB in Korea, 5. to suggest an alternative preliminary standard of ESB. The conclusions were as follows: 1. Putting, through analyzing the previous researches, the existing present status of ESB together, it seemed that lighting environment, indoor air environment and noise environment were all in poor conditions. 2. In the result of a comparative analysis of the standard of ESB in Korea, Japan and the United States, in Korea the factors of each lighting and indoor air environment were not presented properly, in Japan, in lighting environment aspect, the standard on natural lighting and the factors on brightness were not presented., and in the USA the essential factors of each environment were throughly presented. In the comparison of the standards on each factor, Korea showed that the standard level presented was less properly prescribed than those of the USA and Japan but it also showed that the standard levels prescribed in the USA and in Japan were mostly similar to the standard levels in records investigated. 3. With the result of the normative standard selection on School Builiding environment factor of prescribed in this study, the controversial points of the standard of ESB in Korea were analyzed and the result was utilized to suggest new preliminary standard of ESB. 4. As the result of the analysis of the controversial points of the standard of ESB in Korea, it was found that the standard of ESB in Korea should be established on a basis of School Health Act and be concretely presented in School Health Regulation and School Health Rule. The factors of each environment was improperly presented in the existing standard of ESB in Korea. Moreover the standard of them was inferior to that of the records investigated and those of in the USA and in Japan and it also showed that the standard of it in Korea was improper to maintain Comfortable Learning Environment. 5. A suggested preliminary standard of ESB acquired through above study as follows: 1) In this study a new kind of preliminary standard of ESB is divided into lighting environment, indoor air environment, noise environment, odor environment and for above classification, reasonable factor and standard should be established and the controling way on each standard and countermeasures against it should be considered. 2) In lighting environment, the factors of natural lighting are divided into daylight rate, brightness, glare. In the standard on each factor, daylight rate should secure 5% of a mean daylight rate and 2% of a minimum daylight rate, brightness ratio of maximum illumination to minimum illumination should be under 10:1, and in glare there should not be an occurrence factor from a reflector outside of the classroom. And the factors of unnatural lighting are illumination, brightness, and glare. In the standard on each factor, illumination should be 750 lux or more, brightness ratio should be under 3 to 1, and glare should not occur. And Optimal reflection rate(%) of Colors and Facilities of Classroom which influences lighting environment should be considered. 3) In indoor air environment factors, thermal factors are divided into (1) room temperature, (2) relative humidity, (3) room air movement, (4) radiation heat, and harmful gases (5) CO, (6) $CO_2$ that are proceeded from using the heating fuel such as oval briquettes, firewood, charcoal being used in most of the classroom, and finally (7) dust. In the standard on each factor, the next are necessary; room temperature: $16^{\circ}C{\sim}26^{\circ}C$(summer : $E.T18.9{\sim}23.8^{\circ}C$, winter: $E.T16.7{\sim}21.7^{\circ}C$), relative humidity: $30{\sim}80%$, room air movement: under 0.5m/sec, radiation heat: under $5^{\circ}C$ gap between dry-bulb temperature and wet-bulb temperature, below 1000 ppm of ca and below 10ppm of $CO_2$, dust: below 0.10 $mg/m^3$ of Volume of dust in indoor air, and ventilation standard($CO_2$) for purification of indoor air : once/6 min.(about 7 times/40 min.) in an airtight classroom. 4) In the standard on noise environment, noise level should be under 40 dB(A) and the noise measuring way and the countermeasures against it should be considered. 5) In the standard on odor environment, odor level under Physical Method should be under 2 degrees, and the inspecting way and the countermeasures against it should be considered.

  • PDF

Development of Airborne Remote Sensing System for Monitoring Marine Meteorology (Sea Surface Wind and Temperature) (연안 해양기상(해상풍, 수온) 관측을 위한 항공기 원격탐사 시스템)

  • Kim, Duk-Jin;Cho, Yang-Ki;Kang, Ki-Mook;Kim, Jin-Woo;Kim, Seung-Hee
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.18 no.1
    • /
    • pp.32-39
    • /
    • 2013
  • Although space-borne satellites are useful in obtaining information all around the world, they cannot observe at a suitable time and place. In order to overcome these limitations, an airborne remote sensing system was developed in this study. It is composed of a SAR sensor and a thermal infrared sensor. Additionally GPS, IMU, and thermometer/hygrometer were attached to the plane for radiometric and geometric calibration. The brightness of SAR image varies depending on surface roughness, and capillary waves on the sea surface, which are easily generated by sea winds, induce the surface roughness. Thus, sea surface wind can be estimated using the relationship between quantified SAR backscattering coefficient and the sea surface wind. On the other hand, thermal infrared sensor is sensitive to measure object's temperature. Sea surface temperature is obtained from the thermal infrared sensor after correcting the atmospheric effects which are located between sea surface and the sensor. Using these two remote sensing sensors mounted on airplane, four test flights were carried out along the west coast of Korea. The obtained SAR and thermal infrared images have shown that these images were useful enough to monitor coastal environment and estimate marine meteorology data.

SOLAR ACTIVE REGION STUDY USING MICROWAVE MAPS

  • BONG SU-CRAN;LEE JEONGWOO;GARY DALE E.;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.spc1
    • /
    • pp.29-36
    • /
    • 2003
  • Quiescent solar radiation, at microwave spectral regime, is dominated by gyroresonant and thermal Bremsstrahlung radiations from hot electrons residing in solar active region corona. These radiations are known to provide excellent diagnostics on the coronal temperature, density, and magnetic field, provided that spatially resolved spectra are available from observations. In this paper we present an imaging spectroscopy implemented for a bipolar active region, AR 7912, using the multifrequency interferometric data from the Owens Valley Solar Array (OVSA), as processed with a new imaging technique, so-called Spatio-Spectral Maximum Entropy Method (SSMEM). From the microwave maps at 26 frequencies in the range of 1.2-12.4 GHz at both right- and left-circular polarizations, we construct spatially resolved brightness spectra in every reconstructed pixel of about 2 arcsec interval. These spectra allowed us to determine 2-D distribution of electron temperature, magnetic field of coronal base, and emission measure at the coronal base above the active region. We briefly compare the present result with existing studies of the coronal active regions.