DOI QR코드

DOI QR Code

Retrieval and Validation of Aerosol Optical Properties Using Japanese Next Generation Meteorological Satellite, Himawari-8

일본 정지궤도 기상위성 Himawari-8을 이용한 에어로졸 광학정보 산출 및 검증

  • Lim, Hyunkwang (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Choi, Myungje (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Kim, Mijin (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Kim, Jhoon (Global Environment Laboratory, Dept. of Atmospheric Sciences, Yonsei University) ;
  • Chan, P.W. (Hong Kong Observatory)
  • 임현광 (연세대학교 대기과학과/지구환경연구소) ;
  • 최명제 (연세대학교 대기과학과/지구환경연구소) ;
  • 김미진 (연세대학교 대기과학과/지구환경연구소) ;
  • 김준 (연세대학교 대기과학과/지구환경연구소) ;
  • Received : 2016.12.12
  • Accepted : 2016.12.26
  • Published : 2016.12.31

Abstract

Using various satellite measurements in UV, visible and IR, diverse algorithms to retrieve aerosol information have been developed and operated to date. Advanced Himawari Imager (AHI) onboard the Himawari 8 weather satellite was launched in 2014 and has 16 channels from visible to Thermal InfRared (TIR) in high temporal and spatial resolution. Using AHI, it is very valuable to retrieve aerosol optical properties over dark surface to demonstrate its capability. To retrieve aerosol optical properties using visible and Near InfRared (NIR) region, surface signal is very important to be removed which can be estimated using minimum reflectivity method. The estimated surface reflectance is then used to retrieve the aerosol optical properties through the inversion process. In this study, we retrieve the aerosol optical properties over dark surface, but not over bright surface such as clouds, desert and so on. Therefore, the bright surface was detected and masked using various infrared channels of AHI and spatial heterogeneity, Brightness Temperature Difference (BTD), etc. The retrieval result shows the correlation coefficient of 0.7 against AERONET, and the within the Expected Error (EE) of 49%. It is accurately retrieved even for low Aerosol Optical Depth (AOD). However, AOD tends to be underestimated over the Beijing Hefei area, where the surface reflectance using the minimum reflectance method is overestimated than the actual surface reflectance.

자외선, 가시광, 적외선 파장대역의 채널을 갖는 위성 관측에 기반한 다양한 에어로졸 정보산출 알고리즘에 대해 많은 연구가 이루어져 왔다. 본 연구에서는 최근 발사된 일본 기상위성 히마와리 8의 가시광-적외선 채널정보를 이용하여, 어두운 지표 위에서 에어로졸 광학정보를 산출하였다. 가시영역을 이용한 에어로졸 광학정보 산출은 지표신호의 정확한 제거가 매우 중요한데, 이는 최소반사도법을 사용하여 산출하였다. 본 알고리즘은 어두운 지표에서 에어로졸 광학정보를 산출을 하기에 구름, 사막 등과 같은 밝은 지표 위에서는 산출하지 않는다. AHI는 가시광채널 외에도, 다양한 적외 채널을 갖고 있어 공간 비균질성, 밝기온도차이(Brightness Temperature Difference, BTD) 등을 이용하여 구름제거가 가능하다. 밝기온도(Brightness Temperature, BT)를 이용해 하층운, 상층운 제거에 유리한 채널을 사용하여 구름을 제거하게 된다. Aerosol Optical Depth (AOD) 산출 결과로는 상관계수가 0.7, 기대오차(Expected Error, EE) 안에 있는 비율이 49%를 나타내고 있으며, 낮은 AOD에서도 정확한 산출이 이뤄지고 있음을 보이고 있다. 다만 베이징 허베이 지역에서는 에어로졸 광학두께를 과소모의하는 경향이 있는데, 이는 최소반사도법을 이용한 지표정보 산출이 실제 지표반사도보다 높게 지표면 정보를 추정하게 되기 때문으로 추정된다.

Keywords

References

  1. Choi, M., J. Kim, J. Lee, M. Kim, Y.-J. Park, U. Jeong, W. Kim, H. Hong, B. Holben, T.F. Eck, C.H. Song, J.-H. Lim, and C.-K. Song, 2016. GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGONNE Asia 2012 campaign. Atmospheric Measurement Techniques, 9(3): 1377-1398. https://doi.org/10.5194/amt-9-1377-2016
  2. Ciren, P. and S. Kondragunta, 2014. Dust aerosol index (DAI) algorithm for MODIS. Journal of Geophysical Research: Atmospheres, 119(8): 4770-4792. https://doi.org/10.1002/2013JD020855
  3. Dubovik, O. and M.D. King, 2000. A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements. Journal of Geophysical Research, D16, 105: 20673-20696. https://doi.org/10.1029/2000JD900282
  4. Dubovik, O., A. Smirnov, B. Holben, M. King, Y. Kaufman, T. Eck and I. Slutsker, 2000. Accuracy assessments of aerosol optical properties retrieved from Aerosol Robotic Network (AERONET) Sun and sky radiance measurements, Journal of Geophysical Research, D8, 105, 9791-9806. https://doi.org/10.1029/2000JD900040
  5. Holben, B., T. Eck, I. Slutsker, D. Tanre, J. Buis, A. Setzer, E. Vermote, J. Reagan, Y. Kaufman and T. Nakajima, 1998. AERONET-A federated instrument network and data archive for aerosol characterization. Remote sensing of environment, 66(1): 1-16. https://doi.org/10.1016/S0034-4257(98)00031-5
  6. Hsu, N.C., S.-C. Tsay, M.D. King and J.R. Herman, 2004. Aerosol properties over bright-reflecting source regions. Geoscience and Remote Sensing, IEEE Transactions on, 42(3): 557-569. https://doi.org/10.1109/TGRS.2004.824067
  7. Hsu, N.C., S.-C. Tsay, M.D. King and J.R. Herman, 2006. Deep blue retrievals of Asian aerosol properties during ACE-Asia. Geoscience and Remote Sensing, IEEE Transactions on, 44(11): 3180-3195. https://doi.org/10.1109/TGRS.2006.879540
  8. Jeong, U., J. Kim, C. Ahn, O. Torres, X. Liu, P.K. Bhartia, R.J. Spurr, D. Haffner, K. Chance and B. N. Holben, 2016. An optimal-estimationbased aerosol retrieval algorithm using OMI near-UV observations. Atmospheric Chemistry and Physics, 16(1): 177-193. https://doi.org/10.5194/acp-16-177-2016
  9. Jethva, H., O. Torres, L.A. Remer and P.K. Bhartia, 2013. A color ratio method for simultaneous retrieval of aerosol and cloud optical thickness of above-cloud absorbing aerosols from passive sensors: Application to MODIS measurements. Geoscience and Remote Sensing, IEEE Transactions on, 51(7): 3862-3870. https://doi.org/10.1109/TGRS.2012.2230008
  10. Jethva, H., O. Torres, F. Waquet, D. Chand and Y. Hu, 2014. How do A-train sensors intercompare in the retrieval of above cloud aerosol optical depth? A case study-based assessment. Geophysical Research Letters, 41(1): 186-192. https://doi.org/10.1002/2013GL058405
  11. Kim, J., J. Lee, H.C. Lee, A. Higurashi, T. Takemura and C. H. Song, 2007. Consistency of the aerosol type classification from satellite remote sensing during the Atmospheric Brown Cloud-East Asia Regional Experiment campaign. Journal of Geophysical Research: Atmospheres, 112(D22), D22S33.
  12. Kim, J., J.M. Yoon, M. Ahn, B. Sohn and H. Lim, 2008. Retrieving aerosol optical depth using visible and mid-IR channels from geostationary satellite MTSAT-1R. International Journal of Remote Sensing, 29(21): 6181-6192. https://doi.org/10.1080/01431160802175553
  13. Kim, M., J. Kim, M.S. Wong, J. Yoon, J. Lee, D. Wu, P. Chan, J.E. Nichol, C.-Y. Chung and M.-L. Ou, 2014. Improvement of aerosol optical depth retrieval over Hong Kong from a geostationary meteorological satellite using critical reflectance with background optical depth correction. Remote Sensing of Environment, 142: 176-187. https://doi.org/10.1016/j.rse.2013.12.003
  14. Knapp, K., R. Frouin, S. Kondragunta and A. Prados, 2005. Toward aerosol optical depth retrievals over land from GOES visible radiances: determining surface reflectance. International Journal of Remote Sensing, 26(18): 4097-4116. https://doi.org/10.1080/01431160500099329
  15. Lau, K.M. and K.M. Kim, 2006. Observational relationships between aerosol and Asian monsoon rainfall, and circulation. Geophysical Research Letters, 33(21), L21810, doi:10.1029/2006GL027546.
  16. Lee, J., J. Kim, C.H. Song, S.B. Kim, Y. Chun, B.J. Sohn and B. N. Holben, 2010a. Characteristics of aerosol types from AERONET sunphotometer measurements. Atmospheric Environment, 44(26): 3110-3117. https://doi.org/10.1016/j.atmosenv.2010.05.035
  17. Lee, J., J. Kim, C.H. Song, J.-H. Ryu, Y.-H. Ahn and C.K. Song, 2010b. Algorithm for retrieval of aerosol optical properties over the ocean from the Geostationary Ocean Color Imager. Remote Sensing of Environment, 114(5): 1077-1088. https://doi.org/10.1016/j.rse.2009.12.021
  18. Lee, J., J. Kim, P. Yang and N.C. Hsu, 2012. Improvement of aerosol optical depth retrieval from MODIS spectral reflectance over the global ocean using new aerosol models archived from AERONET inversion data and tri-axial ellipsoidal dust database. Atmospheric Chemistry and Physics, 12(15): 7087-7102. https://doi.org/10.5194/acp-12-7087-2012
  19. Levy, R., S. Mattoo, L. Munchak, L. Remer, A. Sayer and N. Hsu, 2013. The Collection 6 MODIS aerosol products over land and ocean. Atmos. Meas. Tech. Discuss, 6: 159-259. https://doi.org/10.5194/amtd-6-159-2013
  20. Levy, R. C., L.A. Remer, R.G. Kleidman, S. Mattoo, C. Ichoku, R. Kahn, and T.F. Eck, 2010. Global evaluation of the Collection 5 MODIS darktarget aerosol products over land. Atmospheric Chemistry and Physics, 10(21): 10399-10420. https://doi.org/10.5194/acp-10-10399-2010
  21. Levy, R.C., L.A. Remer, S. Mattoo, E.F. Vermote and Y.J. Kaufman, 2007. Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance. Journal of Geophysical Research: Atmospheres, 112(D13): D13211, doi:10.1029/2006JD007811.
  22. Remer, L. A., Y. Kaufman, D. Tanre, S. Mattoo, D. Chu, J.V. Martins, R.-R. Li, C. Ichoku, R. Levy, and R. Kleidman, 2005. The MODIS aerosol algorithm, products, and validation. Journal of the atmospheric sciences, 62(4): 947-973. https://doi.org/10.1175/JAS3385.1
  23. Remer, L.A., R.G. Kleidman, R.C. Levy, Y.J. Kaufman, D. Tanre, S. Mattoo, J. V. Martins, C. Ichoku, I. Koren, H. Yu and B. N. Holben, 2008. Global aerosol climatology from the MODIS satellite sensors. Journal of Geophysical Research, 113(D14).
  24. Sayer, A., N. Hsu, C. Bettenhausen, and M.J. Jeong, 2013. Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data. Journal of Geophysical Research: Atmospheres, 118(14): 7864-7872. https://doi.org/10.1002/jgrd.50600
  25. Spurr, R.J.D., 2006. VLIDORT: A linearized pseudospherical vector discrete ordinate radiative transfer code for forward model and retrieval studies in multilayer multiple scattering media. Journal of Quantitative Spectroscopy and Radiative Transfer, 102(2): 316-342. https://doi.org/10.1016/j.jqsrt.2006.05.005
  26. Stocker, T., D. Qin, G. Plattner, M. Tignor, S. Allen, J. Boschung, A. Nauels, Y. Xia, B. Bex and B. Midgley, 2013. IPCC, 2013: Climate Change 2013: the physical science basis. Contribution of working group I to the fifth assessment report of the intergovernmental panel on climate change.
  27. Torres, O., H. Jethva, and P. Bhartia, 2012. Retrieval of aerosol optical depth above clouds from OMI observations: Sensitivity analysis and case studies. Journal of the Atmospheric Sciences, 69(3): 1037-1053. https://doi.org/10.1175/JAS-D-11-0130.1
  28. Wong, M.S., K.-H. Lee, J.E. Nichol, and Z. Li, 2010. Retrieval of Aerosol Optical Thickness Using MODIS, a Study in Hong Kong and the Pearl River Delta Region. Geoscience and Remote Sensing, IEEE Transactions on, 48(8): 3318-3327. https://doi.org/10.1109/TGRS.2010.2045124
  29. Zhao, H., H. Che, Y. Ma, X. Xia, Y. Wang, P. Wang and X. Wu, 2015. Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmospheric Research, 166: 204-212. https://doi.org/10.1016/j.atmosres.2015.07.003

Cited by

  1. Intercomparing the Aerosol Optical Depth Using the Geostationary Satellite Sensors (AHI, GOCI and MI) from Yonsei AErosol Retrieval (YAER) Algorithm vol.39, pp.2, 2018, https://doi.org/10.5467/JKESS.2018.39.2.119
  2. AHI/Himawari-8 Yonsei Aerosol Retrieval (YAER): Algorithm, Validation and Merged Products vol.10, pp.5, 2018, https://doi.org/10.3390/rs10050699
  3. Applying the Dark Target aerosol algorithm with Advanced Himawari Imager observations during the KORUS-AQ field campaign vol.12, pp.12, 2016, https://doi.org/10.5194/amt-12-6557-2019
  4. Himawari-8-Derived Aerosol Optical Depth Using an Improved Time Series Algorithm Over Eastern China vol.12, pp.6, 2016, https://doi.org/10.3390/rs12060978
  5. 태양광도계 자료를 이용한 한반도 내 Himawari-8 관측 AOD 특성 분석 vol.36, pp.3, 2016, https://doi.org/10.7780/kjrs.2020.36.3.3
  6. Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns vol.14, pp.6, 2021, https://doi.org/10.5194/amt-14-4575-2021
  7. 부스팅 기반 기계학습기법을 이용한 지상 미세먼지 농도 산출 vol.37, pp.2, 2016, https://doi.org/10.7780/kjrs.2021.37.2.11