• Title/Summary/Keyword: thermal bridge

Search Result 295, Processing Time 0.026 seconds

Coolant Flow Characteristics and Cooling Effects in the Cylinder Head with Coolant Flow System and Local Water Passage (냉각수 공급방식 및 국부적인 물통로의 형상 변화에 따른 냉각수 유동특성 및 연소실 벽면의 냉각효과)

  • 위신환;민영대;이종태
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.32-41
    • /
    • 2003
  • For the countermeasure of expected higher thermal load in miller cycle engine, coolant flows in the cylinder head of base engine with several coolant flow methods and drilled hole passages were measured by using PIV technique. And the cooling effect was evaluated by measurements of wall temperatures according to each coolant flow method. It was found that the series flow system was most suitable among the discussed 3 types of coolant flow methods since it had the best cooling effect in cylinder head by the fastest coolant flow velocity It was also found that for drilled water passage to decrease the large thermal load in exhaust valve bridge, nozzle type is more effective compared with round type of water passage, and its size has to be determined according to the coolant flow pattern and velocity in each cylinder.

A comparison study for the track maintenance system for the non-ballast steel plate bridge (무도상 판형교 레일 장대화에 따른 궤도 유지관리 비교연구)

  • Nam, Bo-Hyun;Jang, Tae-Cheol;Woo, Yong-Keun;Min, Kyung-Ju
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.401-410
    • /
    • 2007
  • Form the application of long rail system the non-ballast steel plate bridges, fatigue strength increase and rail noise reduction can be expected. This is mainly form the reduction of the rail impact at the rail joint locations which already made to behave together from welds. In the high speed rail, application of long rail system is essential because without long rail system, the required serviceability level can not be achieved. But even with this long rail systems, the thermal expansion from the girder can not be absorbed in the normal bearing systems, and these expansion cause between girder and rail. Also unexpected rail buckling and fracture through rail thermal tension may happen. It was found through numerical analysis and field measurement that these problems can be avoided by semi-fixed bearing system. In this study, the benefits of non-ballast plate bridge through long rail system, especially at the point of girder stability, girder stiffness increase and bearing maintenance will be reviewed.

  • PDF

A Study on Strengthening of Steel Girder Bridge using Multi-Stepwise Thermal Prestressing Method (다단계 온도프리스트레싱을 이용한 강거더교의 보강에 관한 연구)

  • Kim, Sang Hyo;Kim, Jun Hwan;Ahn, Jin Hee
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.6
    • /
    • pp.717-726
    • /
    • 2006
  • Traditional external post-tensioning method using either steel bars or tendons is commonly used as a retrofitting method for steel composite bridges. However, the method has some disadvantages such as stress concentration at anchorages and inefficient load-carrying capability of live loads. Multi-stepwise prestressing method using thermal expanded coverplate is a newly proposed prestressing method, which was originally developed for prestressing steel structures. A new retrofitting method for steel girder bridges founded on a simple concept of thermal expansion and contraction of cover plate, the method is a hybrid of and combines the advantages of external post-tensioning and thermal prestressing. In this paper, basic concepts of the method are presented and an illustrative experiment is introduced. From actual experimental data, the thermal prestressing effect was substantiated and the FEM approach for its analysis was verified. The retrofitting effects ofa single-span bridge were analyzed and the feasibility of the developed method was examined.

Influence of Aging of Lead Rubber Bearing on Seismic Performance of Bridges (납고무받침의 노화가 교량의 내진성능에 미치는 영향)

  • Park, Seong-Kyu;Oh, Ju
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2A
    • /
    • pp.109-116
    • /
    • 2012
  • The dynamic properties of lead rubber bearings, which are used as isolator, are dependent on the main rubber's dynamic behaviors and nonlinear qualities. Rubber materials tend to undergo an aging process under the influence of mechanical or environmental factors, so they can end up inevitably facing damage. A main cause of such aging is known to be oxidization, which occurs through the heat of reaction at high temperatures. Accordingly, in this study an accelerated thermal aging test was carried out in order to compare the characteristic values of the bearings with each other before and after thermal aging occurs. As a result of this experiment, it was found that a thermal aging phenomenon could have an effect on shear stiffness, energy absorption, and equivalent damping coefficients. Furthermore, a decline in the dynamic properties of the lead rubber bearings by means of the thermal aging process was applied to an actual bridge and the effects of such thermal aging on the seismic performance of the bridge were also compared and analyzed based on numerical analysis. As a result of this analysis, it was found that the changes in the basic properties of the lead rubber bearings have a minor effect on the seismic performance of bridges.

Long term earth pressure behavior behind stub abutment (난쟁이 교대배면의 장기 토압거동)

  • 박영호;정경자;김낙영;황영철
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.779-786
    • /
    • 2002
  • To find a long term horizontal movement of superstructure caused by seasonal thermal change, several types of gages are installed such as soil earth pressuremeter behind stub abutment and jointmeter between approach slab and relief slab. As results, maximum passive earth pressure behind integral bridge abutments centerline with lateral movement of superstructure is about 1/6 of classic Rankine's earth pressure. And its distribution is not triangular but rectangular shape due to shape behind integral bridge abutments.

  • PDF

A Study to Evaluate Performance of Poly-Urethane Polymer Concrete for Long-Span Orthotropic Steel Bridge (장경간 강바닥판 케이블교량에 적용하기 위한 폴리우레탄 폴리머콘크리트의 공용특성 연구)

  • Park, Heeyoung;Lee, Junghun;Kwak, Byeongseok;Choi, Iehyun;Kim, Taewoo
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.1-9
    • /
    • 2013
  • PURPOSES: The purpose of this study is to evaluate physical properties, durability, fatigue resistance, and long-term performance of poly-urethane concrete (PU) which can be possible application of thin layer on long-span orthotropic steel bridge and to check structural stability of bridge structure. METHODS : Various tests of physical properties, such as flexural strength, tensile strength, bond strength and coefficient of thermal expansion tests were conducted for physical property evaluation using two types of poly urethane concrete which have different curing time. Freezing and thawing test, accelerated weathering test and chloride ion penetration test were performed to evaluate the effect of exposed to marine environment. Beam fatigue test and small scale accelerated pavement test were performed to assess the resistance of PU against fatigue damage and long-term performance. Structural analysis were conducted to figure out structural stability of bridge structure and thin bridge deck pavement system. RESULTS: The property tests results showed that similar results were observed overall however the flexural strength of PUa was higher than those of PUb. It was also found that PU materials showed durability at marine environment. Beam fatigue test results showed that the resistances of the PUa against fatigue damage were two times higher than those of the PUb. It was found form small scale accelerated pavement test to evaluate long-term performance that there is no distress observed after 800,000 load applications. Structural analysis to figure out structural stability of bridge structure and thin bridge deck pavement system indicated that bridge structures were needed to increase thickness of steel deck plate or to improve longitudinal rib shape. CONCLUSIONS: It has been known that the use of PU can be positively considered to thin layer on long-span orthotropic steel bridge in terms of properties considered marine environment, resistance of fatigue damage and long-term performance.

Problem Analysis of Sandwich Insulation Wall System (중단열 시스템의 문제점 분석)

  • Park, Jun-Ho;Yu, Jung-Ho
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.166-167
    • /
    • 2015
  • Because of energy crisis at all around the world, there is many method and system which for improving energy efficiency has appeared in construction industry. And then, 20% of entire building energy loss is emissed to exterior of buildings, that is important to building's entire energy efficiency. So, many research has been conducted for imporve exterior energy efficiency and generally it called insulation of wall. Method for wall insulation can be classified interior system and exterior system which defined installation place of insulation board whether interior or exterior of structural wall. However, interior system has thermal problem such as thermal-bridge which can be necessarily occur condensation. and exterior system has constructional problem such as difficult to construction because exterior and finish work so expensive construction cost than other insulation method. Thus, sandwich insulation wall system has been appeared for solving these problems. Sandwich insulation system must using wall connecting things because both side walls is divided by center insulation. At this, Through the heat at wall connecter, it can be occured thermal-bridge and broken insulation board when under construction will be bring negative effect by reducing wall thickness and insulation deficit. At this study, we were compared previous sandwich insulation system and analysis these system's problem for develop the improving constructability and performance of sandwich insulation system.

  • PDF

A Measurement and Evaluation on the Indoor Thermal Conditions in Summer of a New Training ship (신조 운항실습선의 여름철 실내 온열환경 실측평가)

  • Shin, Dong-Keol;Lee, Jin-Uk;Lee, Hyong-Ki;Hwang, Kwang-Il
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.276-283
    • /
    • 2008
  • The purpose of this study is to measure and analyze the ship's indoor thermal conditions and also to integrate experimental database of those which are supplied and controlled by marine HVAC. On this study, temperature, humidity and air volume of 6 different needs' cabin are measured like previous report on a newly-launched training ship during 25th through 27th of July, 2007. Followings are the results of this study. (1)The air supply volumes to each cabins are measured 250CMH(Recreation room), 800CMH(Conference room), 1.000CMH(Bridge), 5,100CMH(Lecture room) respectively. (2)The temperatures are maintained at $21{\sim}27^{\circ}C$ in almost cabins through measuring period, but the temperatures are fluctuated over ${\pm}4^{\circ}C$ at the bridge and conference room. (3)The relative humidities are shown between $40{\sim}60%$ known as comfort conditions, but the conference room is needed to dehumidified because of over 70% humidity. (4)From the student cabins' measurements which have different supply diffuser(s), it is clear that the design is suitable for this case. (5)Because of temperature diversities, only 32% among the measured data are satisfied with the comfort standard range proposed by ASHREA.