• 제목/요약/키워드: thermal and pH stability

검색결과 301건 처리시간 0.032초

Stability of Carthamin from Carthamus tinctorius in Aqueous Solution;pH and temperature effects

  • Kim, Jun-Bum;Paik, Young-Sook
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.643-646
    • /
    • 1997
  • Thermal stability of a red pigment, carthamin, frm Carthamus tinctorius was investigated to explore possible applications as natural color additives for foods, cosmetics, and nutraceuticals. Degree of degradation reactions of carthamin at acidic, neutral and alkaline conditions were determined with UV/V is spectral measurements. Decomposition half lives of carthamin at 25.deg. C were 4.0 h, 5.1 h, and 12.5 h at pH 5.0, pH 7.0, and pH 12.0, respectively, indicating that carthamin is much more stable at alkaline pH than acidic or neutral conditions. The activation energies of carthamin at pH 5.0, pH 7.0, and pH 12.0 were 15.6, 15.7 and 16.8 kcal/mol, respectively.

  • PDF

아스파탐의 열안정성에 미치는 온도와 pH의 영향 (Effect of Temperature and pH on Thermal Stability of Aspartame)

  • 김우정;정남용
    • 한국식품과학회지
    • /
    • 제28권2호
    • /
    • pp.311-315
    • /
    • 1996
  • 아스파탐을 가열할 때 온도 및 pH가 아스파탐의 열안정성에 미치는 영향을 조사하였다. 아스파탐 용액을 $60-100^{\circ}C$로 가열하였을 때 가열온도가 높아질수록 아스파탐의 분해속도가 빨라졌으며 이 때의 활성화 에너지는 20.77 Kcal/mole이었다 또한 열분해물질인 DKP와 ${\alpha}$-AP는 아스파탐의 열분해와 함깨 생성속도가 증가하였으며, 분해산물 증 DKP량이 ${\alpha}$-AP보다 현저하게 많이 생성되었다. 가열 중 pH의 변화는 $60{\sim}80^{\circ}C$에서는 10시간 가열동안 비교적 완만하게 감소하였고 $100^{\circ}C$에서는 초기 pH 4.52에서 3.92로 감소하였다가 그 후 다시 완만하게 감소하였다. 1%아스파탐 용액을 pH $3{\sim}7$의 범위로 조절하여 $100^{\circ}C$에서 가열하였을 때 pH $3.0^{\circ}C4.5$의 산성범위에서 안정하였고 PH7에서 불안정하였으며, 초기 1시간 가열 후 pH 7에서의 열분해 속도상수는 0.83으로 다른 pH의 열분해 속도상수의 값인 $0.045{\sim}0.286$에 비해 큰 차이를 보였다. 따라서 아스파탐은 pH 7과 고온에서 매우 불안정함을 보여 주었다.

  • PDF

녹차 종실유의 제조법에 따른 열산화 안정성 비교 (Effects of Extraction Method on the Thermal Oxidative Stability of Seed Oils from Camellia sinensis L.)

  • 김미선;이재환;김명애
    • 한국식생활문화학회지
    • /
    • 제25권6호
    • /
    • pp.788-794
    • /
    • 2010
  • Camellia sinensis L. (green tea) seed oils were prepared by roasting at $213^{\circ}C$ and pressing (RP), pressing (P), and nhexane extraction (H). The physico-chemical properties of the RP, P, and H samples, including fatty acid composition, color, and sensory characteristics were analyzed. RP, P and H samples were thermally oxidized at $180^{\circ}C$, and oxidative stability was determined by DPPH, CDA, and p-AV at 0, 20, 40, 60, and 80 min. Compared to the P and H samples, RP resulted in significantly higher thermal oxidative stability according to the DPPH, CDA, and p-AV results (p<0.05). The ratio of unsaturated fatty acids to saturated fatty acids among RP, P, and H samples were significantly different (p<0.05). The oleic acid and linoleic acid contents in green tea seed oils were 58 and 23%, respectively. Hunter's color value of lightness (L) for the RP, P, and H samples was not significant. Redness (a) of RP was $3.47{\pm}0.119$ and yellowness (b) of H was $60.10{\pm}2.483$, which were significantly different. Compared to RP samples, H and P samples had the highest color and off-odor values in the sensory evaluation. RP samples showed the highest taste value and were significant overall (p<0.05). The thermal stability of RP extraction was more stable than any other method. Camellia sinensis L. seed oil extracted by RP had better sensory characteristics than other edible oils, including soybean oil, grape seed oil, and extra virgin olive oil.

Soybean peroxidase의 추출공정 및 안정성 특성 (Extraction Process and Stability Characteristics of Soybean Peroxidase)

  • 서경림;이은규
    • KSBB Journal
    • /
    • 제13권5호
    • /
    • pp.599-605
    • /
    • 1998
  • Soybean peroxidase was extracted from soybean hulls and purified by ammonium sulfate precipitations (25% and 75% saturation), pl fractionation, and anionic exchange and gel filtration chromatographies (DEAE-Sephadex A-50 and Superose 12). Modlecular weight and pl value were estimated to be ca. 45 kD and 4.2, respectively. Purified soybean peroxidase had an RZ value of 0.43. Compared with horseradish peroxidase, it showed superior thermal and pH stability. Assuming the first-order kinetics, the thermal deactivation rate constant of soybean peroxidase at 80$^{\circ}C$ was about 8 times lower than that of horseradish peroxidase. Deactivation energy was calculated to be 69.3 kcal/mol. Soybean peroxidase showed about 10% higher H2O2 degradation capacity than horseradish peroxidase. Exploiting these advantages, the soybean peroxidase purified from the domestic soybean hull is expected to replace horseradish peroxidase in various applications.

  • PDF

The Thermal Stability and Elevated Temperature Mechanical Properties of Spray-Deposited $SiC_P$/Al-11.7Fe-1.3V-1.7Si Composite

  • Hao, L.;He, Y.Q.;Wang, Na;Chen, Z.H.;Chen, Z.G.;Yan, H.G.;Xu, Z.K.
    • Advanced Composite Materials
    • /
    • 제18권4호
    • /
    • pp.351-364
    • /
    • 2009
  • The thermal stability and elevated temperature mechanical properties of $SiC_P$/Al-11.7Fe-1.3V-1.7Si (Al-11.7Fe-1.3V-1.7Si reinforced with SiC particulates) composites sheets prepared by spray deposition (SD) $\rightarrow$ hot pressing $\rightarrow$ rolling process were investigated. The experimental results showed that the composite possessed high ${\sigma}_b$ (elevated temperature tensile strength), for instance, ${\sigma}_b$ was 315.8 MPa, which was tested at $315^{\circ}C$, meanwhile the figure was 232.6 MPa tested at $400^{\circ}C$, and the elongations were 2.5% and 1.4%, respectively. Furthermore, the composite sheets exhibited excellent thermal stability: the hardness showed no significant decline after annealing at $550^{\circ}C$ for 200 h or at $600^{\circ}C$ for 10 h. The good elevated temperature mechanical properties and excellent thermal stability should mainly be attributed to the formation of spherical ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase particulates in the aluminum matrix. Furthermore, the addition of SiC particles into the alloy is another important factor, which the following properties are responsible for. The resultant Si of the reaction between Al matrix and SiC particles diffused into Al matrix can stabilize ${\alpha}-Al_{12}(Fe,\;V)_3Si$ dispersed phase; in addition, the interface (Si layer) improved the wettability of Al/$SiC_P$, hence, elevated the bonding between them. Furthermore, the fine $Al_4C_3$ phase also strengthened the matrix as a dispersion-strengthened phase. Meanwhile, load is transferred from Al matrix to SiC particles, which increased the cooling rate of the melt droplets and improved the solution strengthening and dispersion strengthening.

Stachybotrys atra에서 추출한 섬유소 분해효소에 관한 연구. I (Studies on the Cellulolytic Enzymes of Stachybotrys atra(I))

  • 김은수;김영민;강영희;최태주
    • 미생물학회지
    • /
    • 제13권2호
    • /
    • pp.59-63
    • /
    • 1975
  • When the enzyme preparations were at various temperatures for 1 hour, the thermal stability for the enzyme was maximum at $30{\circ}C.$ The optimum temperature for the enzyme activity was at $40{\circ}C.$ When the enzyme preparations were exposed to various pHs for 22 hours, the enzyme stability was maximum at pH 3.8, and it was decreased gradually as the pH rose up to 4.8, above which the stability was greatly restored. When the exposure period was extended from 22 to pH's 3.0 and 5.9, but the stability tended to rise at pH's below 3.0 and above 5.9. The optimum pH for the enzyme activity was obtained at 4.8.

  • PDF

$IO_4$-산화 가용성 전분에 의한 파파인의 변형 (Modification of Papain with $IO_4-Oxidized$ Soluble Starch)

  • 안용근
    • 한국식품영양학회지
    • /
    • 제20권4호
    • /
    • pp.349-355
    • /
    • 2007
  • Periodate-oxidized soluble starch was reacted with papain at pH 4.0, pH 7.0, and pH 9.7, and an oxidized soluble starch-papain conjugate was produced. When compared with native papain, the specific activity decreased to 60%, in both the modified papain reacted with 0.4% $NaBH_4$ and in the modified papain not reacted with $NaBH_4$. The specific activity decreased to 70% in the modified papains reacted with 1.5% $NaBH_4$ and 4.0% $NaBH_4$, respectively. The reduction by $NaBH_4$ did not have an effect in the thermal stability of either the modified or nonmodified papain. An activity of 54.7% remained in the papain modified at pH 4.0, which was incubated at $80^{\circ}C$ for 40 min. The papains modified at pH 7.0 and pH 9.7 and incubated for 40 min at two different temperatures, respectively, were stable to $60^{\circ}C$, and at $80^{\circ}C$ their activities at 56.3% and 44.1 %, respectively. The modified papain's thermal stability pattern was similar to that of native papain, with no increase in its statbility. In the range of pH $2.0{\sim}13.0$, the stability of the papain modified at pH 4.0 decreased greatly between pH $3.0{\sim}5.0$, but it was similar to the native papain at other pH values. The stability of the papain modified at pH 7.0 showed a similar pattern to the native papain at pH $2.0{\sim}6.0$, while its stability increased when moving into the alkali pH range. The papain modified at pH 9.7 also had increased stability, when moving into the alkali range. The results of Hammerstein milk casein, which was reacted with the papains modified at pH 4.0, pH 7.0, and pH 9.7, respectively, and analyzed by FPLC, showed different peaks according to the different modification pHs, and the greatest peak differences were observed with the modification at pH 9.7.

키토산 섬유를 담체로 이용한 라이소자임 효소의 고정화 (Immobilization of Lysozyme from Hen Egg by Crosslinking Method onto Chitosan Non-woven)

  • 이소희
    • 한국염색가공학회지
    • /
    • 제30권4호
    • /
    • pp.264-274
    • /
    • 2018
  • Immobilization of lysozyme on chitosan non-woven using glutaraldehyde(GA) was investigated. For this, 100 % chitosan non-woven was prepared as novel support for the enzyme immobilization. In addition, free lysozyme activity was examined depending on various pH and temperature by measuring time. Moreover, the optimum immobilization conditions depending on various pH, temperature, immobilization time and lysozyme concentration was evaluated. In addition, thermal stability and storage stability of immobilized lysozyme were measured. The characteristics of immobilized lysozyme was examined by FT-IR, surface morphology, and MTT assay. The results are follows: the optimal immobilization of lysozyme were pH 7.0, $25^{\circ}C$, lysozyme concentration 1.5 mg/ml, immobilization time 240 min. The immobilized lysozyme showed higher thermal stability than the free trypsin. The immobilized lysozyme activity was retained 80 % of its initial activity at $4^{\circ}C$ over 30 days of storage. The lysozyme was immobilized effectively on chitosan non-woven by observation of surface morphology.

천연식용색소 개발을 위한 치자에서 황색소의 추출 (Yellow Color Extraction from Gardenia jasmonoides Ellis for Development of Natural Food Color)

  • 김희구;손홍주
    • 한국식품영양학회지
    • /
    • 제10권2호
    • /
    • pp.241-245
    • /
    • 1997
  • 천연식용색소를 제조하기 위하여 치자를 이용하여 색소추출의 최적조건과 황색 4호와의 내열성 및 내광성을 조사하였다. 에탄올을 추출용매로 사용한 경우 색소추출 최적조건은 추출온도 4$0^{\circ}C$, 추출시간 42시간, 추출 pH 7.0 및 기질농도 10%였다. 물추출의 경우 추출온도는 7$0^{\circ}C$, 추출시간 48시간, 추출 pH 7.0 및 기질농도 10%였다. 최적조건에서의 추출수율은 에탄올의 경우 75%였고, 물추출의 경우는 63%로 나타났다. 황색 4호와 치자 황색소의 내열성 및 내광성을 비교 검토한 결과, 황색 4호는 내열성과 내광성이 모두 98% 이상으로 나타났으나, 치자 황색소의 경우는 내열성은 62%, 내광성은 90%로 나타났다.

  • PDF

Effects of pH-Shift Processing and Microbial Transglutaminase on the Gel and Emulsion Characteristics of Porcine Myofibrillar System

  • Hong, Geun-Pyo;Chun, Ji-Yeon;Jo, Yeon-Ji;Choi, Mi-Jung
    • 한국축산식품학회지
    • /
    • 제34권2호
    • /
    • pp.207-213
    • /
    • 2014
  • This study investigated the effects of microbial transglutaminase (MTGase) and pH-shift processing on the functional properties of porcine myofibrillar proteins (MP). The pH-shift processing was carried out by decreasing the pH of MP suspension to 3.0, followed by re-adjustment to pH 6.2. The native (CM) and pH-shifted MP (PM) was reacted with and without MTGase, and the gelling and emulsion characteristics were compared. To compare the pH-shifted MTGase-treated MP (PT), deamidation (DM) was conducted by reacting MTGase with MP at pH 3.0. Rigid thermal gel was produced by MTGase-treated native MP (CT) and PT. PM and DM showed the lowest storage modulus (G') at the end of thermal scanning. Both MTGase and pH-shifting produced harder MP gel, and the highest gel strength was obtained in PT. All treatments yielded lower than CM, and CT showed significantly higher yield than PM and DM treatments. For emulsion characteristics, pH-shifting improved the emulsifying ability of MP-stabilized emulsion, while the treatments had lower emulsion stability. PM-stabilized emulsion exhibited the lowest creaming stability among all treatments. The emulsion stability could be improved by the usage of MTGase. The results indicated that pH-shifting combined with MTGase had a potential application to modify or improve functional properties of MP in manufacturing of meat products.