• Title/Summary/Keyword: thermal activation

Search Result 778, Processing Time 0.027 seconds

Syntheses, Solubilities and Thermal Properties of Polyamide-imides containing Bis(p-carbonylphenyl)diphenylsilane units (Bis(p-carbonylphenyl)diphenylsilane 단위를 함유한 폴리아미드-이미드의 합성과 용해도 및 열적성질에 관한 연구)

  • Un Sik Kim;Young Kiel Sung;Yoon Koo Sik
    • Journal of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.590-600
    • /
    • 1987
  • Silicone-containing polyamide-imides were prepared from bis(p-chlorocarbonylphenyl)diphenylsilane (BCCDPS), pyromellitic dianhydride(PMDA) and diamines. The thermal characteristics of the above polymers had been carefully studied using a thermogravimetric analyzer. The thermal stability of polymer was decreased with increasing contents of bis(p-carbonylphenyl)diphenylsilane units(BCDPS). The effect of diamine on thermal stability of polymer led benzidine > m-phenylenediamine> 4,4'-diaminodiphenyl ether > 4,4'-diaminodiphenyl sulfone. The activation energy of degradation of polymer obtained by Friedman method increased as the contents of BCDPS in the polymer decreased. The degradation temperature of polymers generally increased as the activation energy increased. The solubility of polymer increased as the content of BCDPS increased except polymers prepared with benzidine.

  • PDF

Determination of reaction kinetics during vitrification of radioactive liquid waste for different types of base glass

  • Suneel, G.;Rajasekaran, S.;Selvakumar, J.;Kaushik, Chetan P.;Gayen, J.K.;Ravi, K.V.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.746-754
    • /
    • 2019
  • Vitrification of radioactive liquid waste (RLW) provides a feasible solution for isolating radionuclides from the biosphere for an extended period. In vitrification, base glass and radioactive waste are added simultaneously into the melter. Determination of heat and mass transfer rates is necessary for rational design and sizing of melter. For obtaining an assured product quality, knowledge of reaction kinetics associated with the thermal decomposition of waste constituents is essential. In this study Thermogravimetry (TG) - Differential Thermogravimetry (DTG) of eight kinds of nitrates and two oxides, which are major components of RLW, is investigated in the temperature range of 298-1273 K in the presence of base glasses of five component (5C) and seven component (7C). Studies on thermal behavior of constituents in RLW were carried out at heating rates ranging from 10 to $40\;K\;min^{-1}$ using TG - DTG. Thermal behavior and related kinetic parameters of waste constituents, in the presence of 5C and 7C base glass compositions were also investigated. The activation energy, pre-exponential factor and order of the reaction for the thermal decomposition of 24% waste oxide loaded glasses were estimated using Kissinger method.

Influence of thermal radiation and magnetohydrodynamic on the laminar flow: Williamson fluid for velocity profile

  • Muzamal Hussain;Humaira Sharif;Mohammad Amien Khadimallah;Hamdi Ayed;Abir Mouldi;Muhammad Naeem Mohsin;Sajjad Hussain;Abdelouahed Tounsi
    • Advances in nano research
    • /
    • v.16 no.4
    • /
    • pp.427-434
    • /
    • 2024
  • Latest advancement in field of fluid dynamics has taken nanofluid under consideration which shows large thermal conductance and enlarges property of heat transformation in fluids. Motivated by this, the key aim of the current investigation scrutinizes the influence of thermal radiation and magnetohydrodynamic on the laminar flow of an incompressible two-dimensional Williamson nanofluid over an inclined surface in the presence of motile microorganism. In addition, the impact of heat absorption/generation and Arrhenius activation energy is also examined. A mathematical modeled is developed which stimulate the physical flow problem. By using the compatible similarities, we transfer the governing PDEs into ODEs. The analytic approach based on Homotopy analysis method is introduced to impose the analytic solution by using Mathematica software. The impacts of distinct pertinent variable on velocity profiles are investigated through graphs.

Study on the Thermal Decomposition Characteristics of the Tert-butylperoxymaleate using the DSC (DSC를 이용한 터셔리부틸퍼옥시말레이트의 열분해특성에 관한 연구)

  • Lee, Jung-Suk;Choi, Yi-Rac;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.3
    • /
    • pp.40-46
    • /
    • 2020
  • Tertbutylperoxymaleate is the one of the organic peroxides used as a raw material of initiator formulations of artificial marble manufacturing. In this study, the thermal decomposition characteristic of TBPM was evaluated using the differential scanning calorimeter in the air and nitrogen circumstance. Regardless of the reaction atmosphere, TBPM showed the exothermic peak due to the drastic decomposition reaction below 130 ℃. The activation energy estimated by dynamic methods had a range of 203~217 kJ/mol and that estimated by model-free analysis method had a range of 118~232 kJ/mol with a thermal conversion. And the ADT24, the temperature that lead to the maximum heating rate within 24 hours, was evaluated as (80~95) ℃ using the estimated activation energy.

Analysis on Activation Energy Measurement and Application of Nuclear Equipment Non-metallic Materials (원전기기 비금속재료의 활성화에너지 측정 및 적용성 분석)

  • Bhang, Keug-Jin;Hong, Jun-Hee
    • Journal of Power System Engineering
    • /
    • v.20 no.4
    • /
    • pp.38-43
    • /
    • 2016
  • Safety-related equipments of Nuclear Power Plants(NPP) have to perform environmental qualification test in accordance with IEEE-323 standards. However, non-metallic materials replace new one regularly instead of the test because they are considered as consumable parts. In this study, the seven kinds of non-metallic materials are selected and their activation energy was experimentally evaluated with uncertainty analysis by using thermogravimetric analyzer(TGA). In order to obtain activation energy of non-metallic materials, mass difference, temperature raising rate and conversion rate on the specimen are analyzed. It is postulated that the three experiment conditions are important to get a reliable activation energy. This postulate was experimentally confirmed using Arrhenius equation and Flynn-Wall-Ozawa analysis.

Study on Thermal Decomposition of Korean Diaspore (국내산 다이아스포아의 열분해에 관한 연구)

  • 이헌수;손명모;박희찬
    • Journal of the Korean Ceramic Society
    • /
    • v.24 no.4
    • /
    • pp.307-312
    • /
    • 1987
  • The investigation has been performed to study thermal dehydration of Song-sug, Pyung-il-do and Chung-mu diapore in Korea. Thermal analysis of Korean diaspore showed two steps of dehydration by dispore and kaolinite. The activation energy of dehydration reation of each diaspore was calculated by kissinger's method, and the results obtained were 63.608, 37.867 and 54.885Kcal/mol, respectively.

  • PDF

A Study on Effects of Vulcanization Systems on Cross-linking and Degradation Reactions of NR/CR Blends Using Dynamic DSC and TGA (Dynamic DSC와 TGA를 이용한 NR/CR 고무블렌드의 가황시스템이 가교 및 열화반응에 미치는 영향 연구)

  • Min, Byung-kwon;Park, DongRyul;Ahn, WonSool
    • Korean Chemical Engineering Research
    • /
    • v.47 no.2
    • /
    • pp.169-173
    • /
    • 2009
  • Effects of variations sulfur/accelerator ratio on cross-linking and thermal degradation behavior of NR/CR rubber compounds were studied using both dynamic DSC and non-isothermal TGA. DSC thermograms of the given samples were obtained with several different heating rates, and after cross-liked in DSC, TGA thermograms with the same samples also obtained. Kissinger analysis was applied to assess the activation energies for the cross-linking and thermal decomposition processes. Results showed that the formation and thermal decomposition reaction of the samples occurred in the overall temperature range of $120{\sim}180^{\circ}C$ and $350{\sim}450^{\circ}C$, respectively, exhibiting that data could be well-fittable by Kissinger method. Furthermore, formation activation energy by DSC was estimated as $83.0{\pm}5.0kJ/mol$, which was much smaller than that of degradation by TGA, $147.0{\pm}2.0kJ/mol$. From these results, it was considered that, although variations of sulfur/accelerator ratio in the present experiments affected little on the formation mechanism and/or thermal degradation, they could play roles as the catalysts which lower the activation energy of formation. Because of stabilization after formation reaction, however, they have no more effects on the lowering the activation energy, showing higher values when decomposition, caused by main-chain scissions.

Culturability of Clostridium botulinum Spores under Different Germination Conditions, Sublethal Heat Treatments, and in the Presence of Nisin

  • Chung, Yoon-Kyung;Yousef, Ahmed E.
    • Preventive Nutrition and Food Science
    • /
    • v.12 no.4
    • /
    • pp.251-258
    • /
    • 2007
  • Thermal resistance and heat activation characteristics of Clostridium botulinum ATCC 25763 spores were evaluated. The effects of nisin and pH on the activation and subsequent germination were also investigated. Spores of C. botulinum were not inactivated by heat treatments up to $92^{\circ}C$ for 2 hr. Heat treatment at $85^{\circ}C$ for 90 min was selected as the optimal activation condition based on monitoring subsequent germination. L-alanine alone or in combination with L-cysteine was not sufficient to germinate the spores of this strain. Tryptone-Peptone- Glucose-Yeast extract (TPGY) broth supplemented with L-alanine was used as a suitable germination medium. Decreasing pH of activation suspension increased the degree of phase darkening, i.e., germination. In addition, the presence of nisin during activation increased the degree of phase darkening. The majority of spore populations were dormant at a pH of less than 2.8, and these populations required heat activation to increase the culturability on TPGY agar medium. However, extended heating in the presence of nisin at pH 2.8 decreased the spore count; however, heat activation was less necessary at pH 3.4, compared at pH 2.8.

Thermal Degradation Analyses of Epoxy-Silica Nano Composites (에폭시-실리카 나노 복합소재의 열화 특성 및 거동 분석)

  • Jang, Seo-Hyun;Han, Yusu;Hwang, Do Soon;Jung, Joo Won;Kim, Yeong K.
    • Composites Research
    • /
    • v.33 no.5
    • /
    • pp.268-274
    • /
    • 2020
  • This paper analyzed the degradation behaviors of silica nano epoxy composite based on the isoconversional method. The size of the silica nano particle was about 12 nm and the particles were mixed by three different weight ratios to make the degradation test samples. The thermogravimetric analyses were performed under six different temperature increase rates to measure the weight changes. Four different methods, Friedman, Flynn-Wall-Ozawa, Kissinger and DAEM (Distributed Activation Energy Method), were employed to calculate the activation energies depending on the conversion ratios, and their calculation results were compared. The results represented that the activation energy was increased when the silica nano particles were mixed up to 10%, indicating the definite contribution of the particles to the degradation behavior enhancements. However, the enhancement was not proportional to the particle mixture ratio by demonstrating the similar activation energies between 10% and 18% samples. The calculation results by the different methods were also compared and discussed.