• Title/Summary/Keyword: thermal activation

Search Result 786, Processing Time 0.041 seconds

Thermal Hazard and Decomposition Characteristics of 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide (2-Chloro-N-(Cyano-2-thienyl methyl) acetamide의 열적 위험성 및 분해 특성)

  • Choi, Yi-Rac;Seo, Dong-Hyun;Han, Ou-Sup
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.5
    • /
    • pp.41-48
    • /
    • 2022
  • 2-Chloro-N-(Cyano-2-thienyl methyl) acetamide (CCTA) is an intermediate used for synthesizing pesticides. It is stable at room temperature and pressure but can be decomposed when heat is accumulated. In this study, the decomposition characteristics were evaluated by measuring the weight change according to temperature using a Thermogravimetry analyzer(TGA), and the thermal decomposition characteristics were evaluated using Differential Scanning Calorimeter(DSC). The exothermic decomposition reaction occurred rapidly at about 91 ℃, and the activation energy determined by using Kissinger method, Kissinger-Akahira-Sunose(KAS) method, and Flynn-Wall-Ozawa(FWO) method were 162 kJ/mol, 149 kJ/mol and 139 kJ/mol, respectively. TD24, the temperature at which the maximum heating rate is reached within 24 hours, was evaluated as 52~55 ℃ using the estimated activation energy.

Thermal Decomposition of Copolymers of Butyl methacrylate and Styrene Produced in a CSTR

  • Kim, Duck-Sool;Kim, Nam-Seok;Park, Keun-Ho
    • Journal of the Korean Applied Science and Technology
    • /
    • v.19 no.4
    • /
    • pp.273-280
    • /
    • 2002
  • Thermal decomposition of the copolymer of butyl methacylate(BMA) with styrene(St) was investigated. The copolymer Was obtained at 80 $^{\circ}C$ in a continuous stirred tank reactor(CSTR) using toluene and benzoyl peroxide(BPO), as solvent and initiator, respectively. The reactor volume was 0.3 liters and residence time was 3 hours. The thermal decomposition followed the second order kinetics for BMA/St copolymer. The activation energies of thermal decompositon were in the ranges of 38 ${\sim}43$ kcal/mol for BMA with St copolymer and a good additivity rule was observed with the composition of copolymer. The thermogravimetric trace curve agreed well with the theoretical calculation.

Thermal Degradation and Cyclodepolymerization of Poly(ethylene terephthalate-co-isophthalate)s

  • Yoo, Dong Il;Shin, Younsook;Youk, Ji Ho
    • Fibers and Polymers
    • /
    • v.2 no.2
    • /
    • pp.75-80
    • /
    • 2001
  • The thermal degradation of poly(ethylene terephthalate-co-isophthalate)s (PETIs) is investigated by using isothermal thermogravimetric analysis at the temperature range of 280-31$0^{\circ}C$. The degradation rate of PETIs is increased as the mole ratio of ethylene isophthaloyl (EI) units in PETIs increases. The activation energies for the thermal degradation of poly(ethylene terephthalate), PETI(5/5), and poly(ethylene isophthalate) are 33.4, 16.6, and 8.9 kcal/mole, respectively. The degradation rate of PETIs is influenced by their volatile cyclic oligomer components formed during the polymerization and the thermal degradation. It is simulated by the rotational isomeric state model that the content of cyclic dimer in PETIs, which is the most volatile cyclic oligomer component, increases with the EI units in PETIs.

  • PDF

Photochemical and Thermal Solvolysis of Picolyl Chlorides

  • Shim Sang Chul;Choi Seung Ju
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.1
    • /
    • pp.30-33
    • /
    • 1982
  • Photochemical and thermal solvolysis of 2,3,4-picolyl chlorides (2,3,4-PC) were studied in amine solvents and the results were correlated with the electronic structures calculated by PPP-SCF-MO CI method. Activation parameters show that the thermal solvolysis of PC is $S_N2$ type rcaction. The rates of thermal reaction in pyridine or t-butylamine solvent decrease in the order of 2-PC > 3-PC > 4-PC. These results are consistent with the predictions based on the electron densities of picolyl chlorides. In photosolvolysis, the same products as those of thermal reactions were obtained. The results indicate that photochemical solvolysis undergoes through heterolytic cleavage. Relative quantum yields of photosolvolysis of 2,3,4-picolyl chlorides in t-butylamine solvent were determined to be 0.73, 1, and 0.50 respectively. These results are in good agreement with the electron densities of the excited triplet state of picolyl chlorides.

Kinetics on the Microwave Carbonization of Rice Chaff (왕겨의 마이크로파 탄화속도)

  • Kim, Ji Hyun;Ryu, Seung Kon;Kim, Dong Kook
    • Korean Chemical Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.683-690
    • /
    • 2005
  • The microwave carbonization of rice chaff was performed, and their kinetics were compared to those of conventional thermal carbonization. Thermal carbonization was carried out at $300-600^{\circ}C$ for 30 minutes. The weight loss and C/H mole ratio remarkably increased as increase of temperature, while there was no carbonization by microwave dielectric heating in spite of increasing incident power and irradiation time. However, microwave carbonization was successfully performed by addition of 6 wt% of thermal carbonized rice chaff, it's C/H mole ratio is larger than 3.0, as a catalytic initiator to uncarbonized rice chaff, and the kinetics was depended on the incident power and irradiation time, resulting in the coincide with thermal carbonization to the Arrhenius equation. The activation energy of microwave carbonization was quite low as compared to that of thermal carbonization, while the kinetic constant was large. This is due to the internal volumetric heating characteristics of carbonized rice chaff by microwave. The effect of ash, and C/H mole ratio and amount of carbonized rice chaff were investigated on microwave carbonization.

A Kinetic Study of Thermal-Oxidative Decomposition of Waste Polyurethane (폐폴리우레탄의 열적 산화분해에 대한 속도론적 연구)

  • Jun, Hyun Chul;Oh, Sea Cheon;Lee, Hae Pyeong;Kim, Hee Taik
    • Applied Chemistry for Engineering
    • /
    • v.17 no.3
    • /
    • pp.296-302
    • /
    • 2006
  • The kinetics of the thermal-oxidative decomposition of waste polyurethane (PU) according to oxygen concentration has been studied using a non-isothermal thermogravimetric technique at several heating rates from 10 to $50^{\circ}C/min$. A kinetic model accounting for the effects of the oxygen concentration by the differential and integral method based on Arrhenius equation was proposed to describe the thermal-oxidative decomposition of waste PU. To obtain the information on the kinetic parameters such as activation energy, reaction order, and pre-exponential factor, the thermogravimetric analysis curves and its derivatives have been analyzed using the kinetic analysis method proposed in this work. From this work, it was found that reaction orders for oxygen concentration had a negative sign, and activation energy decreased as the oxygen concentration increased. It was also found that the kinetic parameters obtained from the integral method using the single heating rate experiments varied with heating rates. Therefore, it is thought that the differential method using the multiple heating rate experiments more effectively represents the thermal-oxidative decomposition of waste polyurethane.

Study on Concrete Activation Reduction in a PET Cyclotron Vault

  • Bakhtiari, Mahdi;Oranj, Leila Mokhtari;Jung, Nam-Suk;Lee, Arim;Lee, Hee-Seock
    • Journal of Radiation Protection and Research
    • /
    • v.45 no.3
    • /
    • pp.130-141
    • /
    • 2020
  • Background: Concrete activation in cyclotron vaults is a major concern associated with their decommissioning because a considerable amount of activated concrete is generated by secondary neutrons during the operation of cyclotrons. Reducing the amount of activated concrete is important because of the high cost associated with radioactive waste management. This study aims to investigate the capability of the neutron absorbing materials to reduce concrete activation. Materials and Methods: The Particle and Heavy Ion Transport code System (PHITS) code was used to simulate a cyclotron target and room. The dimensions of the room were 457 cm (length), 470 cm (width), and 320 cm (height). Gd2O3, B4C, polyethylene (PE), and borated (5 wt% natB) PE with thicknesses of 5, 10, and 15 cm and their different combinations were selected as neutron absorbing materials. They were placed on the concrete walls to determine their effects on thermal neutrons. Thin B4C and Gd2O3 were placed between the concrete wall and additional PE shield separately to decrease the required thickness of the additional shield, and the thermal neutron flux at certain depths inside the concrete was calculated for each condition. Subsequently, the optimum combination was determined with respect to radioactive waste reduction, price, and availability, and the total reduced radioactive concrete waste was estimated. Results and Discussion: In the specific conditions considered in this study, the front wall with respect to the proton beam contained radioactive waste with a depth of up to 64 cm without any additional shield. A single layer of additional shield was inefficient because a thick shield was required. Two-layer combinations comprising 0.1- or 0.4-cm-thick B4C or Gd2O3 behind 10 cm-thick PE were studied to verify whether the appropriate thickness of the additional shield could be maintained. The number of transmitted thermal neutrons reduced to 30% in case of 0.1 cm-thick Gd2O3+10 cm-thick PE or 0.1 cm-thick B4C+10 cm-thick PE. Thus, the thickness of the radioactive waste in the front wall was reduced from 64 to 48 cm. Conclusion: Based on price and availability, the combination of the 10 cm-thick PE+0.1 cmthick B4C was reasonable and could effectively reduce the number of thermal neutrons. The amount of radioactive concrete waste was reduced by factor of two when considering whole concrete walls of the PET cyclotron vault.

Effects of Electroacupuncture on the Regulation of Chemokine Induced Spinal Activation of Microglia in the Rat Model of Neuropathic Pain (흰쥐 신경병증성 통증 모델에서 전침이 케모카인이 유도하는 척수 교세포 활성화 조절에 미치는 영향)

  • Sindhuri, Vishnumolakala;Lee, Ji Eun;Park, Hye-Ji;Kim, So-Hee;Koo, Sungtae
    • Korean Journal of Acupuncture
    • /
    • v.36 no.4
    • /
    • pp.264-273
    • /
    • 2019
  • Objectives : Microglia play a crucial role in electroacupuncture (EA) analgesia on neuropathic pain. The role of chemokines in producing analgesic effects of EA, however, is largely unknown. In the present study, we investigated the role of chemokines in producing analgesic effects of EA in the neuropathic pain model. Methods : Sprague-Dawley rats were randomly assigned into three groups (anesthetized group (ANE), non-acupoint EA group (NAP), and ST36 - GB34 EA group (ACU)). Neuropathic pain was induced by tight ligation of L5 spinal nerve. Mechanical and thermal hypersensitivity of hind paw was tested. Western blot tests and immunofluorescence assay for C-C motif chemokine ligand 2 (CCL2) levels and microglia activation were performed on spinal cord L5/6. EA was treated once daily from the 3rd day after surgery for 5 days. Results : EA treatments applied to ST36 and GB34 significantly reduced both mechanical and thermal hypersensitivity after two and three times of treatment, respectively. While CCL2 expression significantly increased in neuropathic rats, it was significantly reduced in the ACU. In addition, co-localization of CCL2 and activated microglia significantly decreased in the ACU compared to those of ANE and NAP in the spinal cord L5/L6 dorsal horn. Conclusions : The present results suggest that EA applied to ST36 and GB34 modulates the reduction of CCL2 release from the injured neurons and consequently decreases microglia activation in the spinal cord. Regulation of chemokine induced spinal activation of microglia plays a key role in analgesic effects of EA in the rat model of neuropathic pain.

Toll-like receptor 4/nuclear factor-kappa B pathway is involved in radicular pain by encouraging spinal microglia activation and inflammatory response in a rat model of lumbar disc herniation

  • Zhu, Lirong;Huang, Yangliang;Hu, Yuming;Tang, Qian;Zhong, Yi
    • The Korean Journal of Pain
    • /
    • v.34 no.1
    • /
    • pp.47-57
    • /
    • 2021
  • Background: Lumbar disc herniation (LDH) is a common cause of radicular pain, but the mechanism is not clear. In this study, we investigated the engagement of toll-like receptor 4 (TLR4) and the nuclear factor-kappa B (NF-κB) in radicular pain and its possible mechanisms. Methods: An LDH model was induced by autologous nucleus pulposus (NP) implantation, which was obtained from coccygeal vertebra, then relocated in the lumbar 4/5 spinal nerve roots of rats. Mechanical and thermal pain behaviors were assessed by using von Frey filaments and hotplate test respectively. The protein level of TLR4 and phosphorylated-p65 (p-p65) was evaluated by western blotting analysis and immunofluorescence staining. Spinal microglia activation was evaluated by immunofluorescence staining of specific relevant markers. The expression of proand anti-inflammatory cytokines in the spinal dorsal horn was measured by enzyme linked immunosorbent assay. Results: Spinal expression of TLR4 and p-NF-κB (p-p65) was significantly increased after NP implantation, lasting up to 14 days. TLR4 was mainly expressed in spinal microglia, but not astrocytes or neurons. TLR4 antagonist TAK242 decreased spinal expression of p-p65. TAK242 or NF-κB inhibitor pyrrolidinedithiocarbamic acid alleviated mechanical and thermal pain behaviors, inhibited spinal microglia activation, moderated spinal inflammatory response manifested by decreasing interleukin (IL)-1β, IL-6, tumor necrosis factor-α expression and increasing IL-10 expression in the spinal dorsal horn. Conclusions: The study revealed that TLR4/NF-κB pathway participated in radicular pain by encouraging spinal microglia activation and inflammatory response.

Adsorption properties of MgO protective layer in AC PDP

  • Manakhov, Anton;Nikishin, Nikolay;Hur, Min;Heo, Eun--Gi
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.384-387
    • /
    • 2008
  • We have studied the adsorption of contaminations on the MgO protective layer by Thermal Desorption Spectrometry (TDS). The result shows that the increase in exposure time, MgO thickness and humidity multiply the quantity of adsorbed contaminations. It is also found that the desorption activation energy and contamination quantity is decreased by the additional firing process of MgO layer under oxygen environment.

  • PDF