• 제목/요약/키워드: therapeutic evidence

검색결과 646건 처리시간 0.031초

Anti-Inflammatory Role of TAM Family of Receptor Tyrosine Kinases Via Modulating Macrophage Function

  • Lee, Chang-Hee;Chun, Taehoon
    • Molecules and Cells
    • /
    • 제42권1호
    • /
    • pp.1-7
    • /
    • 2019
  • Macrophage is an important innate immune cell that not only initiates inflammatory responses, but also functions in tissue repair and anti-inflammatory responses. Regulating macrophage activity is thus critical to maintain immune homeostasis. Tyro3, Axl, and Mer are integral membrane proteins that constitute TAM family of receptor tyrosine kinases (RTKs). Growing evidence indicates that TAM family receptors play an important role in anti-inflammatory responses through modulating the function of macrophages. First, macrophages can recognize apoptotic bodies through interaction between TAM family receptors expressed on macrophages and their ligands attached to apoptotic bodies. Without TAM signaling, macrophages cannot clear up apoptotic cells, leading to broad inflammation due to over-activation of immune cells. Second, TAM signaling can prevent chronic activation of macrophages by attenuating inflammatory pathways through particular pattern recognition receptors and cytokine receptors. Third, TAM signaling can induce autophagy which is an important mechanism to inhibit NLRP3 inflammasome activation in macrophages. Fourth, TAM signaling can inhibit polarization of M1 macrophages. In this review, we will focus on mechanisms involved in how TAM family of RTKs can modulate function of macrophage associated with anti-inflammatory responses described above. We will also discuss several human diseases related to TAM signaling and potential therapeutic strategies of targeting TAM signaling.

The impacts of exercise on pediatric obesity

  • Headid, Ronald J. III;Park, Song-Young
    • Clinical and Experimental Pediatrics
    • /
    • 제64권5호
    • /
    • pp.196-207
    • /
    • 2021
  • Over the last few decades, the rates of pediatric obesity have more than doubled regardless of sociodemographic categorization, and despite these rates plateauing in recent years there continues to be an increase in the severity of obesity in children and adolescents. This review will discuss the pediatric obesity mediated cardiovascular disease (CVD) risk factors such as attenuated levels of satiety and energy metabolism hormones, insulin resistance, vascular endothelial dysfunction, and arterial stiffness. Additionally, early intervention to combat pediatric obesity is critical as obesity has been suggested to track into adulthood, and these obese children and adolescents are at an increased risk of early mortality. Current suggested strategies to combat pediatric obesity are modifying diet, limiting sedentary behavior, and increasing physical activity. The effects of exercise intervention on metabolic hormones such as leptin and adiponectin, insulin sensitivity/resistance, and body fat in obese children and adolescents will be discussed along with the exercise modality, intensity, and duration. Specifically, this review will focus on the differential effects of aerobic exercise, resistance training, and combined exercise on the cardiovascular risks in pediatric obesity. This review outlines the evidence that exercise intervention is a beneficial therapeutic strategy to reduce the risk factors for CVD and the ideal exercise prescription to combat pediatric obesity should contain both muscle strengthening and aerobic components with an emphasis on fat mass reduction and long-term adherence.

Can Myofascial Release Techniques Reduce Stress Hormones in the Subject of Short Hamstring Syndrome? A Pilot Study

  • Cho, Sunghak
    • 국제물리치료학회지
    • /
    • 제11권4호
    • /
    • pp.2237-2243
    • /
    • 2020
  • Background: The myofascial release technique is known to be an effective technique for increasing posterior fascia flexibility in short hamstring syndrome (SHS) subjects. But therapeutic mechanism of myofascial relaxation remains unclear. Recently, the theory of autonomic nervous system domination has been raised, however, a proper study to test the theory has not been conducted. Objectives: To investigate whether the application of the myofascial release technique can induce changes in the autonomic nervous system and affect the secretion of stress hormones and myofascial relaxation. Design: Quasi-experimental study. Methods: Twenty-four subjects with SHS were randomly divided into two groups. In the experimental group, the suboccipital muscle inhibition (SMI) technique was applied to the subjects for 4 min in supine position, and in the control group, the subjects were lying in the supine position only. A forward flexion distance (FFD) was conducted, blood pressure, heart rate, and cortisol levels were measured before and after the intervention and 30 min after intervention to determine myofascial relaxation and stress hormone levels. The evaluation was conducted separately in blind by an evaluator. Results: A FFD decreased in the experimental group, no change in cortisol was observed. On the contrary, a decrease in cortisol appeared in the control group after 30 minutes. Conclusion: The myofascial release technique is an effective treatment to increase the range of motion through posterior superior myofascial chain, but there is no evidence that myofascial release technique can control the autonomic nervous system.

Human Endogenous Retroviruses as Gene Expression Regulators: Insights from Animal Models into Human Diseases

  • Durnaoglu, Serpen;Lee, Sun-Kyung;Ahnn, Joohong
    • Molecules and Cells
    • /
    • 제44권12호
    • /
    • pp.861-878
    • /
    • 2021
  • The human genome contains many retroviral elements called human endogenous retroviruses (HERVs), resulting from the integration of retroviruses throughout evolution. HERVs once were considered inactive junk because they are not replication-competent, primarily localized in the heterochromatin, and silenced by methylation. But HERVs are now clearly shown to actively regulate gene expression in various physiological and pathological conditions such as developmental processes, immune regulation, cancers, autoimmune diseases, and neurological disorders. Recent studies report that HERVs are activated in patients suffering from coronavirus disease 2019 (COVID-19), the current pandemic caused by SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2) infection. In this review, we describe internal and external factors that influence HERV activities. We also present evidence showing the gene regulatory activity of HERV LTRs (long terminal repeats) in model organisms such as mice, rats, zebrafish, and invertebrate models of worms and flies. Finally, we discuss several molecular and cellular pathways involving various transcription factors and receptors, through which HERVs affect downstream cellular and physiological events such as epigenetic modifications, calcium influx, protein phosphorylation, and cytokine release. Understanding how HERVs participate in various physiological and pathological processes will help develop a strategy to generate effective therapeutic approaches targeting HERVs.

Potential application of biomimetic exosomes in cardiovascular disease: focused on ischemic heart disease

  • Kang, In Sook;Kwon, Kihwan
    • BMB Reports
    • /
    • 제55권1호
    • /
    • pp.30-38
    • /
    • 2022
  • Cardiovascular disease, especially ischemic heart disease, is a major cause of mortality worldwide. Cardiac repair is one of the most promising strategies to address advanced cardiovascular diseases. Despite moderate improvement in heart function via stem cell therapy, there is no evidence of significant improvement in mortality and morbidity beyond standard therapy. The most salutary effect of stem cell therapy are attributed to the paracrine effects and the stem cell-derived exosomes are known as a major contributor. Hence, exosomes are emerging as a promising therapeutic agent and potent biomarkers of cardiovascular disease. Furthermore, they play a role as cellular cargo and facilitate intercellular communication. However, the clinical use of exosomes is hindered by the absence of a standard operating procedures for exosome isolation and characterization, problems related to yield, and heterogeneity. In addition, the successful clinical application of exosomes requires strategies to optimize cargo, improve targeted delivery, and reduce the elimination of exosomes. In this review, we discuss the basic concept of exosomes and stem cell-derived exosomes in cardiovascular disease, and introduce current efforts to overcome the limitations and maximize the benefit of exosomes including engineered biomimetic exosomes.

Stimulant Induced Movement Disorders in Attention Deficit Hyperactivity Disorder

  • Nam, Seok-Hyun;Lim, Myung Ho;Park, Tae Won
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • 제33권2호
    • /
    • pp.27-34
    • /
    • 2022
  • Stimulants, such as amphetamine and methylphenidate, are one of the most effective treatment modalities for attention deficit hyperactivity disorder (ADHD) and may cause various movement disorders. This review discusses various movement disorders related to stimulant use in the treatment of ADHD. We reviewed the current knowledge on various movement disorders that may be related to the therapeutic use of stimulants in patients with ADHD. Recent findings suggest that the use of stimulants and the onset/aggravation of tics are more likely to be coincidental. In rare cases, stimulants may cause stereotypies, chorea, and dyskinesia, in addition to tics. Some epidemiological studies have suggested that stimulants used for the treatment of ADHD may cause Parkinson's disease (PD) after adulthood. However, there is still a lack of evidence that the use of stimulants in patients with ADHD may cause PD, and related studies are only in the early stages. As stimulants are one of the most commonly used medications in children and adolescents, close observations and studies are necessary to assess the effects of stimulants on various movement disorders, including tic disorders and Parkinson's disease.

Adverse Effects of Air Pollution on Pulmonary Diseases

  • Ko, Ui Won;Kyung, Sun Young
    • Tuberculosis and Respiratory Diseases
    • /
    • 제85권4호
    • /
    • pp.313-319
    • /
    • 2022
  • Environmental exposure to air pollution is known to have adverse effects on various organs. Air pollution has greater effects on the pulmonary system as the lungs are directly exposed to contaminants in the air. Here, we review the associations of air pollution with the development, morbidity, and mortality of pulmonary diseases. Short-and long-term exposure to air pollution have been shown to increase mortality risk even at concentrations below the current national guidelines. Ambient air pollution has been shown to be associated with lung cancer. Particularly long-term exposure to particulate matter with a diameter <2.5 ㎛ (PM2.5) has been reported to be associated with lung cancer even at low concentrations. In addition, exposure to air pollution has been shown to increase the incidence risk of chronic obstructive pulmonary disease (COPD) and has been correlated with exacerbation and mortality of COPD. Air pollution has also been linked to exacerbation, mortality, and development of asthma. Exposure to nitrogen dioxide (NO2) has been demonstrated to be related to increased mortality in patients with idiopathic pulmonary fibrosis. Additionally, air pollution increases the incidence of infectious diseases, such as pneumonia, bronchitis, and tuberculosis. Furthermore, emerging evidence supports a link between air pollution and coronavirus disease 2019 transmission, susceptibility, severity and mortality. In conclusion, the stringency of air quality guidelines should be increased and further therapeutic trials are required in patients at high risk of adverse health effects of air pollution.

Human Fibroblast-derived Multi-peptide Factors and the Use of Energy-delivering Devices in Asian Patients

  • Suh, Sang Bum;Ahn, Keun Jae;Chung, Hye Jin;Suh, Ji Youn;Cho, Sung Bin
    • Medical Lasers
    • /
    • 제9권1호
    • /
    • pp.12-24
    • /
    • 2020
  • Human fibroblast-derived multi-peptide factors (MPFs) have been used during treatments with energy-delivering modalities to enhance energy-induced tissue reactions. Human fibroblast-derived MPFs, which include a range of growth factors and chemoattractive factors, activate and recruit fibroblasts and endothelial cells, as well as promote extracellular matrix deposition, all of which are crucial to wound repair. Interestingly, fibroblasts from different species or anatomical sites exhibit distinct transcriptional properties with high heterogeneity. In addition, the patterns of MPF secretion can differ under a range of experimental conditions. Therefore, the use of allogeneic fibroblasts and proper cultivation thereof are necessary to obtain MPFs that can enhance the epithelial-mesenchymal interactions during wound repair. Moreover, energy-delivering devices should be selected according to evidence demonstrating their therapeutic efficacy and safety on a pathological skin condition and the major target skin layers. This paper reviewed the histologic patterns of post-treatment tissue reactions elicited by several energy sources, including non-ablative and ablative fractional lasers, intense focused ultrasound, non-invasive and invasive radiofrequency, picosecond-domain lasers, and argon and nitrogen plasma. The possible role of the immediate application of human fibroblast-derived MPFs during wound repair was proposed.

Challenges of stem cell therapies in companion animal practice

  • Kang, Min-Hee;Park, Hee-Myung
    • Journal of Veterinary Science
    • /
    • 제21권3호
    • /
    • pp.42.1-42.22
    • /
    • 2020
  • Regenerative medicine using stem cells from various sources are emerging treatment modality in several refractory diseases in veterinary medicine. It is well-known that stem cells can differentiate into specific cell types, self-renew, and regenerate. In addition, the unique immunomodulatory effects of stem cells have made stem cell transplantation a promising option for treating a wide range of disease and injuries. Recently, the medical demands for companion animals have been rapidly increasing, and certain disease conditions require alternative treatment options. In this review, we focused on stem cell application research in companion animals including experimental models, case reports and clinical trials in dogs and cats. The clinical studies and therapeutic protocols were categorized, evaluated and summarized according to the organ systems involved. The results indicate that evidence for the effectiveness of cell-based treatment in specific diseases or organ systems is not yet conclusive. Nonetheless, stem cell therapy may be a realistic treatment option in the near future, therefore, considerable efforts are needed to find optimized cell sources, cell numbers and delivery methods in order to standardize treatment methods and evaluation processes.

CKD-581 Downregulates Wnt/β-Catenin Pathway by DACT3 Induction in Hematologic Malignancy

  • Kim, Soo Jin;Kim, Suntae;Choi, Yong June;Kim, U Ji;Kang, Keon Wook
    • Biomolecules & Therapeutics
    • /
    • 제30권5호
    • /
    • pp.435-446
    • /
    • 2022
  • The present study evaluated the anti-cancer activity of histone deacetylase (HDAC)-inhibiting CKD-581 in multiple myeloma (MM) and its pharmacological mechanisms. CKD-581 potently inhibited a broad spectrum of HDAC isozymes. It concentration-dependently inhibited proliferation of hematologic cancer cells including MM (MM.1S and RPMI8226) and T cell lymphoma (HH and MJ). It increased the expression of the dishevelled binding antagonist of β-catenin 3 (DACT3) in T cell lymphoma and MM cells, and decreased the expression of c-Myc and β-catenin in MM cells. Additionally, it enhanced phosphorylated p53, p21, cleaved caspase-3 and the subG1 population, and reversely, downregulated cyclin D1, CDK4 and the anti-apoptotic BCL-2 family. Finally, administration of CKD-581 exerted a significant anti-cancer activity in MM.1S-implanted xenografts. Overall, CKD-581 shows anticancer activity via inhibition of the Wnt/β-catenin signaling pathway in hematologic malignancies. This finding is evidence of the therapeutic potential and rationale of CKD-581 for treatment of MM.