DOI QR코드

DOI QR Code

The impacts of exercise on pediatric obesity

  • Headid, Ronald J. III (School of Health and Kinesiology, University of Nebraska at Omaha) ;
  • Park, Song-Young (School of Health and Kinesiology, University of Nebraska at Omaha)
  • Received : 2020.06.02
  • Accepted : 2020.07.10
  • Published : 2021.05.15

Abstract

Over the last few decades, the rates of pediatric obesity have more than doubled regardless of sociodemographic categorization, and despite these rates plateauing in recent years there continues to be an increase in the severity of obesity in children and adolescents. This review will discuss the pediatric obesity mediated cardiovascular disease (CVD) risk factors such as attenuated levels of satiety and energy metabolism hormones, insulin resistance, vascular endothelial dysfunction, and arterial stiffness. Additionally, early intervention to combat pediatric obesity is critical as obesity has been suggested to track into adulthood, and these obese children and adolescents are at an increased risk of early mortality. Current suggested strategies to combat pediatric obesity are modifying diet, limiting sedentary behavior, and increasing physical activity. The effects of exercise intervention on metabolic hormones such as leptin and adiponectin, insulin sensitivity/resistance, and body fat in obese children and adolescents will be discussed along with the exercise modality, intensity, and duration. Specifically, this review will focus on the differential effects of aerobic exercise, resistance training, and combined exercise on the cardiovascular risks in pediatric obesity. This review outlines the evidence that exercise intervention is a beneficial therapeutic strategy to reduce the risk factors for CVD and the ideal exercise prescription to combat pediatric obesity should contain both muscle strengthening and aerobic components with an emphasis on fat mass reduction and long-term adherence.

Keywords

References

  1. Ng M, Fleming T, Robinson M, Thomson B, Graetz N, Margono C, et al. Global, regional, and national prevalence of overweight and obesity in children and adults during 1980-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2014;384:766-81. https://doi.org/10.1016/s0140-6736(14)60460-8
  2. GBD 2015 Obesity Collaborators, Afshin A, Forouzanfar MH, Reitsma MB, Sur P, Estep K, et al. Health effects of overweight and obesity in 195 countries over 25 years. N Engl J Med 2017;377:13-27. https://doi.org/10.1056/NEJMoa1614362
  3. Gregg EW, Shaw JE. Global health effects of overweight and obesity. N Engl J Med 2017;377:80-1. https://doi.org/10.1056/NEJMe1706095
  4. Ogden CL, Carroll MD, Kit BK, Flegal KM. Prevalence of childhood and adult obesity in the United States, 2011-2012. JAMA 2014;311:806-14. https://doi.org/10.1001/jama.2014.732
  5. Skinner AC, Skelton JA. Prevalence and trends in obesity and severe obesity among children in the United States, 1999-2012. JAMA Pediatr 2014;168:561-6. https://doi.org/10.1001/jamapediatrics.2014.21
  6. Plourde G. Preventing and managing pediatric obesity. Recommendations for family physicians. Can Fam Physician 2006;52:322-8.
  7. Han JC, Lawlor DA, Kimm SY. Childhood obesity. Lancet 2010;375:1737-48. https://doi.org/10.1016/S0140-6736(10)60171-7
  8. Demir D, Bektas M. The effect of childrens' eating behaviors and parental feeding style on childhood obesity. Eat Behav 2017;26:137-42. https://doi.org/10.1016/j.eatbeh.2017.03.004
  9. Anderson SE, Keim SA. Parent-child interaction, self-regulation, and obesity prevention in early childhood. Curr Obes Rep 2016;5:192-200. https://doi.org/10.1007/s13679-016-0208-9
  10. Paeratakul S, Ferdinand DP, Champagne CM, Ryan DH, Bray GA. Fast-food consumption among US adults and children: dietary and nutrient intake profile. J Am Diet Assoc 2003;103:1332-8. https://doi.org/10.1016/S0002-8223(03)01086-1
  11. Ludwig DS, Peterson KE, Gortmaker SL. Relation between consumption of sugar-sweetened drinks and childhood obesity: a prospective, observational analysis. Lancet 2001;357:505-8. https://doi.org/10.1016/S0140-6736(00)04041-1
  12. Lee EY, Kang B, Yang Y, Yang HK, Kim HS, Lim SY, et al. Study time after school and habitual eating are associated with risk for obesity among overweight korean children: a prospective study. Obes Facts 2018;11:46-55. https://doi.org/10.1159/000486132
  13. Fisher JO, Birch LL. Eating in the absence of hunger and overweight in girls from 5 to 7 y of age. Am J Clin Nutr 2002;76:226-31. https://doi.org/10.1093/ajcn/76.1.226
  14. Hernandez B, Gortmaker SL, Colditz GA, Peterson KE, Laird NM, Parra-Cabrera S. Association of obesity with physical activity, television programs and other forms of video viewing among children in Mexico city. Int J Obes Relat Metab Disord 1999;23:845-54. https://doi.org/10.1038/sj.ijo.0800962
  15. Arluk SL, Branch JD, Swain DP, Dowling EA. Childhood obesity's relationship to time spent in sedentary behavior. Mil Med 2003;168:583-6. https://doi.org/10.1093/milmed/168.7.583
  16. Vicente-Rodriguez G, Rey-Lopez JP, Martin-Matillas M, Moreno LA, Warnberg J, Redondo C, et al. Television watching, videogames, and excess of body fat in Spanish adolescents: the AVENA study. Nutrition 2008;24:654-62. https://doi.org/10.1016/j.nut.2008.03.011
  17. Andersen RE, Crespo CJ, Bartlett SJ, Cheskin LJ, Pratt M. Relationship of physical activity and television watching with body weight and level of fatness among children: results from the Third National Health and Nutrition Examination Survey. JAMA 1998;279:938-42. https://doi.org/10.1001/jama.279.12.938
  18. Skinner AC, Perrin EM, Moss LA, Skelton JA. Cardiometabolic risks and severity of obesity in children and young adults. N Engl J Med 2015;373:1307-17. https://doi.org/10.1056/NEJMoa1502821
  19. Reilly JJ, Kelly J. Long-term impact of overweight and obesity in childhood and adolescence on morbidity and premature mortality in adulthood: systematic review. Int J Obes (Lond) 2011;35:891-8. https://doi.org/10.1038/ijo.2010.222
  20. Venn AJ, Thomson RJ, Schmidt MD, Cleland VJ, Curry BA, Gennat HC, et al. Overweight and obesity from childhood to adulthood: a follow-up of participants in the 1985 Australian Schools Health and Fitness Survey. Med J Aust 2007;186:458-60. https://doi.org/10.5694/j.1326-5377.2007.tb00997.x
  21. Simmonds M, Burch J, Llewellyn A, Griffiths C, Yang H, Owen C, et al. The use of measures of obesity in childhood for predicting obesity and the development of obesity-related diseases in adulthood: a systematic review and meta-analysis. Health Technol Assess 2015;19:1-336.
  22. Dietz WH. Critical periods in childhood for the development of obesity. Am J Clin Nutr 1994;59:955-9. https://doi.org/10.1093/ajcn/59.5.955
  23. Thyfault JP, Krogh-Madsen R. Metabolic disruptions induced by reduced ambulatory activity in free-living humans. J Appl Physiol (1985) 2011;111:1218-24. https://doi.org/10.1152/japplphysiol.00478.2011
  24. Thyfault JP, Booth FW. Lack of regular physical exercise or too much inactivity. Curr Opin Clin Nutr Metab Care 2011;14:374-8. https://doi.org/10.1097/MCO.0b013e3283468e69
  25. Sirico F, Bianco A, D'Alicandro G, Castaldo C, Montagnani S, Spera R, et al. Effects of physical exercise on adiponectin, leptin, and inflammatory markers in childhood obesity: systematic review and meta-analysis. Child Obes 2018;14:207-17. https://doi.org/10.1089/chi.2017.0269
  26. Whooten R, Kerem L, Stanley T. Physical activity in adolescents and children and relationship to metabolic health. Curr Opin Endocrinol Diabetes Obes 2019;26:25-31. https://doi.org/10.1097/MED.0000000000000455
  27. Nascimento H, Alves AI, Medeiros AF, Coimbra S, Catarino C, Bronzeda-Rocha E, et al. Impact of a school-based intervention protocol ACORDA Project - on adipokines in an overweight and obese pediatric population. Pediatr Exerc Sci 2016;28:407-16. https://doi.org/10.1123/pes.2015-0261
  28. Balagopal P, George D, Yarandi H, Funanage V, Bayne E. Reversal of obesity-related hypoadiponectinemia by lifestyle intervention: a controlled, randomized study in obese adolescents. J Clin Endocrinol Metab 2005;90:6192-7. https://doi.org/10.1210/jc.2004-2427
  29. McMurray RG, Hackney AC. Interactions of metabolic hormones, adipose tissue and exercise. Sports Med 2005;35:393-412. https://doi.org/10.2165/00007256-200535050-00003
  30. Grundy SM, Cleeman JI, Daniels SR, Donato KA, Eckel RH, Franklin BA, et al. Diagnosis and management of the metabolic syndrome: an American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation 2005;112:2735-52. https://doi.org/10.1161/CIRCULATIONAHA.105.169404
  31. Nicklas TA, von Duvillard SP, Berenson GS. Tracking of serum lipids and lipoproteins from childhood to dyslipidemia in adults: the Bogalusa Heart Study. Int J Sports Med 2002;23 Suppl 1:S39-43.
  32. Juhola J, Magnussen CG, Viikari JS, Kahonen M, Hutri-Kahonen N, Jula A, et al. Tracking of serum lipid levels, blood pressure, and body mass index from childhood to adulthood: the Cardiovascular Risk in Young Finns Study. J Pediatr 2011;159:584-90. https://doi.org/10.1016/j.jpeds.2011.03.021
  33. Ronti T, Lupattelli G, Mannarino E. The endocrine function of adipose tissue: an update. Clin Endocrinol (Oxf) 2006;64:355-65. https://doi.org/10.1111/j.1365-2265.2006.02474.x
  34. Kershaw EE, Flier JS. Adipose tissue as an endocrine organ. J Clin Endocrinol Metab 2004;89:2548-56. https://doi.org/10.1210/jc.2004-0395
  35. Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol 2002;13:51-9. https://doi.org/10.1097/00041433-200202000-00008
  36. Garcia-Hermoso A, Ceballos-Ceballos RJ, Poblete-Aro CE, Hackney AC, Mota J, Ramirez-Velez R. Exercise, adipokines and pediatric obesity: a meta-analysis of randomized controlled trials. Int J Obes (Lond) 2017;41:475-82. https://doi.org/10.1038/ijo.2016.230
  37. Sinha R, Fisch G, Teague B, Tamborlane WV, Banyas B, Allen K, et al. Prevalence of impaired glucose tolerance among children and adolescents with marked obesity. N Engl J Med 2002;346:802-10. https://doi.org/10.1056/NEJMoa012578
  38. Golbidi S, Laher I. Exercise induced adipokine changes and the metabolic syndrome. J Diabetes Res 2014;2014:726861. https://doi.org/10.1155/2014/726861
  39. Ruige JB, Dekker JM, Blum WF, Stehouwer CD, Nijpels G, Mooy J, et al. Leptin and variables of body adiposity, energy balance, and insulin resistance in a population-based study. The Hoorn Study. Diabetes Care 1999;22:1097-104. https://doi.org/10.2337/diacare.22.7.1097
  40. Jeon JY, Han J, Kim HJ, Park MS, Seo DY, Kwak YS. The combined effects of physical exercise training and detraining on adiponectin in overweight and obese children. Integr Med Res 2013;2:145-50. https://doi.org/10.1016/j.imr.2013.10.001
  41. Lopes WA, Leite N, da Silva LR, Brunelli DT, Gaspari AF, Radominski RB, et al. Effects of 12 weeks of combined training without caloric restriction on inflammatory markers in overweight girls. J Sports Sci 2016;34:1902-12. https://doi.org/10.1080/02640414.2016.1142107
  42. Son WM, Sung KD, Bharath LP, Choi KJ, Park SY. Combined exercise training reduces blood pressure, arterial stiffness, and insulin resistance in obese prehypertensive adolescent girls. Clin Exp Hypertens 2017;39:546-52. https://doi.org/10.1080/10641963.2017.1288742
  43. Simonds SE, Pryor JT, Ravussin E, Greenway FL, Dileone R, Allen AM, et al. Leptin mediates the increase in blood pressure associated with obesity. Cell 2014;159:1404-16. https://doi.org/10.1016/j.cell.2014.10.058
  44. Trayhurn P, Beattie JH. Physiological role of adipose tissue: white adipose tissue as an endocrine and secretory organ. Proc Nutr Soc 2001;60:32939.
  45. Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dardeno TA, Kim SY, et al. Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 2011;301:E567-84. https://doi.org/10.1152/ajpendo.00315.2011
  46. Ouchi N, Parker JL, Lugus JJ, Walsh K. Adipokines in inflammation and metabolic disease. Nat Rev Immunol 2011;11:85-97. https://doi.org/10.1038/nri2921
  47. Considine RV, Sinha MK, Heiman ML, Kriauciunas A, Stephens TW, Nyce MR, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996;334:292-5. https://doi.org/10.1056/NEJM199602013340503
  48. Li S, Liu R, Arguelles L, Wang G, Zhang J, Shen X, et al. Adiposity trajectory and its associations with plasma adipokine levels in children and adolescents-A prospective cohort study. Obesity (Silver Spring) 2016;24:408-16. https://doi.org/10.1002/oby.21378
  49. Mantovani RM, Rocha NP, Magalhaes DM, Barbosa IG, Teixeira AL, Simoes E Silva AC. Early changes in adipokines from overweight to obesity in children and adolescents. J Pediatr (Rio J) 2016;92:624-30. https://doi.org/10.1016/S0022-3476(78)80307-2
  50. Kelly AS, Steinberger J, Olson TP, Dengel DR. In the absence of weight loss, exercise training does not improve adipokines or oxidative stress in overweight children. Metabolism 2007;56:1005-9. https://doi.org/10.1016/j.metabol.2007.03.009
  51. Vasconcellos F, Seabra A, Cunha F, Montenegro R, Penha J, Bouskela E, et al. Health markers in obese adolescents improved by a 12-week recreational soccer program: a randomised controlled trial. J Sports Sci 2016;34:564-75. https://doi.org/10.1080/02640414.2015.1064150
  52. Karacabey K. The effect of exercise on leptin, insulin, cortisol and lipid profiles in obese children. J Int Med Res 2009;37:1472-8. https://doi.org/10.1177/147323000903700523
  53. Balagopal PB, Gidding SS, Buckloh LM, Yarandi HN, Sylvester JE, George DE, et al. Changes in circulating satiety hormones in obese children: a randomized controlled physical activity-based intervention study. Obesity (Silver Spring) 2010;18:1747-53. https://doi.org/10.1038/oby.2009.498
  54. Shultz SP, Dahiya R, Leong GM, Rowlands DS, Hills AP, Byrne NM. Muscular strength, aerobic capacity, and adipocytokines in obese youth after resistance training: a pilot study. Australas Med J 2015;8:113-20. https://doi.org/10.4066/AMJ.2015.2293
  55. Racil G, Zouhal H, Elmontassar W, Ben Abderrahmane A, De Sousa MV, Chamari K, et al. Plyometric exercise combined with high-intensity interval training improves metabolic abnormalities in young obese females more so than interval training alone. Appl Physiol Nutr Metab 2016;41:103-9. https://doi.org/10.1139/apnm-2015-0384
  56. Damaso AR, da Silveira Campos RM, Caranti DA, de Piano A, Fisberg M, Foschini D, et al. Aerobic plus resistance training was more effective in improving the visceral adiposity, metabolic profile and inflammatory markers than aerobic training in obese adolescents. J Sports Sci 2014;32:1435-45. https://doi.org/10.1080/02640414.2014.900692
  57. Seabra A, Katzmarzyk P, Carvalho MJ, Seabra A, Coelho-E-Silva M, Abreu S, et al. Effects of 6-month soccer and traditional physical activity programmes on body composition, cardiometabolic risk factors, inflammatory, oxidative stress markers and cardiorespiratory fitness in obese boys. J Sports Sci 2016;34:1822-9. https://doi.org/10.1080/02640414.2016.1140219
  58. Park TG, Hong HR, Lee J, Kang HS. Lifestyle plus exercise intervention improves metabolic syndrome markers without change in adiponectin in obese girls. Ann Nutr Metab 2007;51:197-203. https://doi.org/10.1159/000104137
  59. Ouwens DM, Bekaert M, Lapauw B, Van Nieuwenhove Y, Lehr S, Hartwig S, et al. Chemerin as biomarker for insulin sensitivity in males without typical characteristics of metabolic syndrome. Arch Physiol Biochem 2012;118:135-8. https://doi.org/10.3109/13813455.2012.654800
  60. Matsuzawa Y, Funahashi T, Kihara S, Shimomura I. Adiponectin and metabolic syndrome. Arterioscler Thromb Vasc Biol 2004;24:29-33. https://doi.org/10.1161/01.ATV.0000099786.99623.EF
  61. Kim ES, Im JA, Kim KC, Park JH, Suh SH, Kang ES, et al. Improved insulin sensitivity and adiponectin level after exercise training in obese Korean youth. Obesity (Silver Spring) 2007;15:3023-30. https://doi.org/10.1038/oby.2007.360
  62. Wong A, Sanchez-Gonzalez MA, Son WM, Kwak YS, Park SY. The effects of a 12-week combined exercise training program on arterial stiffness, vasoactive substances, inflammatory markers, metabolic profile, and body composition in obese adolescent girls. Pediatr Exerc Sci 2018;30:480-6. https://doi.org/10.1123/pes.2017-0198
  63. Racil G, Ben Ounis O, Hammouda O, Kallel A, Zouhal H, Chamari K, et al. Effects of high vs. moderate exercise intensity during interval training on lipids and adiponectin levels in obese young females. Eur J Appl Physiol 2013;113:2531-40. https://doi.org/10.1007/s00421-013-2689-5
  64. Xydakis AM, Case CC, Jones PH, Hoogeveen RC, Liu MY, Smith EO, et al. Adiponectin, inflammation, and the expression of the metabolic syndrome in obese individuals: the impact of rapid weight loss through caloric restriction. J Clin Endocrinol Metab 2004;89:2697-703. https://doi.org/10.1210/jc.2003-031826
  65. Nassis GP, Papantakou K, Skenderi K, Triandafillopoulou M, Kavouras SA, Yannakoulia M, et al. Aerobic exercise training improves insulin sensitivity without changes in body weight, body fat, adiponectin, and inflammatory markers in overweight and obese girls. Metabolism 2005;54:1472-9. https://doi.org/10.1016/j.metabol.2005.05.013
  66. Roberts CK, Hevener AL, Barnard RJ. Metabolic syndrome and insulin resistance: underlying causes and modification by exercise training. Compr Physiol 2013;3:1-58. https://doi.org/10.1002/cphy.c110062
  67. Wu Y, Ding Y, Tanaka Y, Zhang W. Risk factors contributing to type 2 diabetes and recent advances in the treatment and prevention. Int J Med Sci 2014;11:1185-200. https://doi.org/10.7150/ijms.10001
  68. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus--present and future perspectives. Nat Rev Endocrinol 2011;8:228-36. https://doi.org/10.1038/nrendo.2011.183
  69. Rosenbloom AL, Silverstein JH, Amemiya S, Zeitler P, Klingensmith GJ; International Society for Pediatric, et al. ISPAD clinical practice consensus guidelines 2006-2007. Type 2 diabetes mellitus in the child and adolescent. Pediatr Diabetes 2008;9:512-26. https://doi.org/10.1111/j.1399-5448.2008.00429.x
  70. Kim J, Son WM, Headid RJ, Pekas EJ, Noble JM, Park SY. Corrigendum to: the effects of a 12-week jump rope exercise program on body composition, insulin sensitivity, and academic self-efficacy in obese adolescent girls. J Pediatr Endocrinol Metab 2020;33:681. https://doi.org/10.1515/jpem-2020-2132
  71. Shaibi GQ, Cruz ML, Ball GD, Weigensberg MJ, Salem GJ, Crespo NC, et al. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. Med Sci Sports Exerc 2006;38:1208-15. https://doi.org/10.1249/01.mss.0000227304.88406.0f
  72. Van Der Heijden GJ, Wang ZJ, Chu Z, Toffolo G, Manesso E, Sauer PJ, et al. Strength exercise improves muscle mass and hepatic insulin sensitivity in obese youth. Med Sci Sports Exerc 2010;42:1973-80. https://doi.org/10.1249/MSS.0b013e3181df16d9
  73. Seo DY, Lee S, Figueroa A, Kim HK, Baek YH, Kwak YS, et al. Yoga training improves metabolic parameters in obese boys. Korean J Physiol Pharmacol 2012;16:175-80. https://doi.org/10.4196/kjpp.2012.16.3.175
  74. Marson EC, Delevatti RS, Prado AK, Netto N, Kruel LF. Effects of aerobic, resistance, and combined exercise training on insulin resistance markers in overweight or obese children and adolescents: a systematic review and meta-analysis. Prev Med 2016;93:211-8. https://doi.org/10.1016/j.ypmed.2016.10.020
  75. Ho SS, Dhaliwal SS, Hills AP, Pal S. The effect of 12 weeks of aerobic, resistance or combination exercise training on cardiovascular risk factors in the overweight and obese in a randomized trial. BMC Public Health 2012;12:704. https://doi.org/10.1186/1471-2458-12-704
  76. Bharath LP, Choi WW, Cho JM, Skobodzinski AA, Wong A, Sweeney TE, et al. Combined resistance and aerobic exercise training reduces insulin resistance and central adiposity in adolescent girls who are obese: randomized clinical trial. Eur J Appl Physiol 2018;118:1653-60. https://doi.org/10.1007/s00421-018-3898-8
  77. Chung ST, Onuzuruike AU, Magge SN. Cardiometabolic risk in obese children. Ann N Y Acad Sci 2018;1411:166-83. https://doi.org/10.1111/nyas.13602
  78. Strong JP, Malcom GT, McMahan CA, Tracy RE, Newman WP 3rd, Herderick EE, et al. Prevalence and extent of atherosclerosis in adolescents and young adults: implications for prevention from the Pathobiological Determinants of Atherosclerosis in Youth Study. JAMA 1999;281:727-35. https://doi.org/10.1001/jama.281.8.727
  79. McGill HC Jr, McMahan CA, Zieske AW, Sloop GD, Walcott JV, Troxclair DA, et al. Associations of coronary heart disease risk factors with the intermediate lesion of atherosclerosis in youth. The Pathobiological Determinants of Atherosclerosis in Youth (PDAY) Research Group. Arterioscler Thromb Vasc Biol 2000;20:1998-2004. https://doi.org/10.1161/01.ATV.20.8.1998
  80. Reinehr T, Kiess W, de Sousa G, Stoffel-Wagner B, Wunsch R. Intima media thickness in childhood obesity: relations to inflammatory marker, glucose metabolism, and blood pressure. Metabolism 2006;55:113-8. https://doi.org/10.1016/j.metabol.2005.07.016
  81. Zabarsky G, Beek C, Hagman E, Pierpont B, Caprio S, Weiss R. Impact of severe obesity on cardiovascular risk factors in youth. J Pediatr 2018;192:105-14. https://doi.org/10.1016/j.jpeds.2017.09.066
  82. Barseghian A, Gawande D, Bajaj M. Adiponectin and vulnerable atherosclerotic plaques. J Am Coll Cardiol 2011;57:761-70. https://doi.org/10.1016/j.jacc.2010.11.011
  83. Sabbatini AR, Fontana V, Laurent S, Moreno H. An update on the role of adipokines in arterial stiffness and hypertension. J Hypertens 2015;33:435-44. https://doi.org/10.1097/HJH.0000000000000444
  84. Gulcelik NE, Usman A, Gurlek A. Role of adipocytokines in predicting the development of diabetes and its late complications. Endocrine 2009; 36:397-403. https://doi.org/10.1007/s12020-009-9234-7
  85. McTernan PG, Kusminski CM, Kumar S. Resistin. Curr Opin Lipidol 2006;17:170-5. https://doi.org/10.1097/01.mol.0000217899.59820.9a
  86. Daniels SR. Complications of obesity in children and adolescents. Int J Obes (Lond) 2009;33 Suppl 1:S60-5. https://doi.org/10.1038/ijo.2009.20
  87. Hagman E, Danielsson P, Brandt L, Ekbom A, Marcus C. Association between impaired fasting glycaemia in pediatric obesity and type 2 diabetes in young adulthood. Nutr Diabetes 2016;6:e227. https://doi.org/10.1038/nutd.2016.34
  88. Watts K, Beye P, Siafarikas A, O'Driscoll G, Jones TW, Davis EA, et al. Effects of exercise training on vascular function in obese children. J Pediatr 2004;144:620-5. https://doi.org/10.1016/j.jpeds.2004.02.027
  89. Watts K, Beye P, Siafarikas A, Davis EA, Jones TW, O'Driscoll G, et al. Exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. J Am Coll Cardiol 2004;43:1823-7. https://doi.org/10.1016/j.jacc.2004.01.032
  90. Mangner N, Scheuermann K, Winzer E, Wagner I, Hoellriegel R, Sandri M, et al. Childhood obesity: impact on cardiac geometry and function. JACC Cardiovasc Imaging 2014;7:1198-205. https://doi.org/10.1016/j.jcmg.2014.08.006
  91. Gimbrone MA Jr, Garcia-Cardena G. Endothelial Cell Dysfunction and the Pathobiology of Atherosclerosis. Circ Res 2016;118:620-36. https://doi.org/10.1161/CIRCRESAHA.115.306301
  92. TODAY Study Group. Lipid and inflammatory cardiovascular risk worsens over 3 years in youth with type 2 diabetes: the TODAY clinical trial. Diabetes Care 2013;36:1758-64. https://doi.org/10.2337/dc12-2388
  93. Cote AT, Phillips AA, Harris KC, Sandor GG, Panagiotopoulos C, Devlin AM. Obesity and arterial stiffness in children: systematic review and meta-analysis. Arterioscler Thromb Vasc Biol 2015;35:1038-44. https://doi.org/10.1161/ATVBAHA.114.305062
  94. Northcott JM, Yeganeh A, Taylor CG, Zahradka P, Wigle JT. Adipokines and the cardiovascular system: mechanisms mediating health and disease. Can J Physiol Pharmacol 2012;90:1029-59. https://doi.org/10.1139/y2012-053
  95. Chen C, Jiang J, Lu JM, Chai H, Wang X, Lin PH, et al. Resistin decreases expression of endothelial nitric oxide synthase through oxidative stress in human coronary artery endothelial cells. Am J Physiol Heart Circ Physiol 2010;299:H193-201. https://doi.org/10.1152/ajpheart.00431.2009
  96. Vita JA, Keaney JF Jr. Endothelial function: a barometer for cardiovascular risk? Circulation 2002;106:640-2. https://doi.org/10.1161/01.CIR.0000028581.07992.56
  97. Inaba Y, Chen JA, Bergmann SR. Prediction of future cardiovascular outcomes by flow-mediated vasodilatation of brachial artery: a meta-analysis. Int J Cardiovasc Imaging 2010;26:631-40. https://doi.org/10.1007/s10554-010-9616-1
  98. Green DJ, Jones H, Thijssen D, Cable NT, Atkinson G. Flow-mediated dilation and cardiovascular event prediction: does nitric oxide matter? Hypertension 2011;57:363-9. https://doi.org/10.1161/hypertensionaha.110.167015
  99. Ras RT, Streppel MT, Draijer R, Zock PL. Flow-mediated dilation and cardiovascular risk prediction: a systematic review with meta-analysis. Int J Cardiol 2013;168:344-51. https://doi.org/10.1016/j.ijcard.2012.09.047
  100. Okumura K, Imamura A, Murakami R, Numaguchi Y, Matsui H, Toyoaki M. Endothelial function and early atherosclerotic changes. Future Cardiol 2005;1:501-8. https://doi.org/10.2217/14796678.1.4.501
  101. Higashi Y, Kihara Y, Noma K. Endothelial dysfunction and hypertension in aging. Hypertens Res 2012;35:1039-47. https://doi.org/10.1038/hr.2012.138
  102. Maiorana A, O'Driscoll G, Dembo L, Cheetham C, Goodman C, Taylor R, et al. Effect of aerobic and resistance exercise training on vascular function in heart failure. Am J Physiol Heart Circ Physiol 2000;279:H1999-2005. https://doi.org/10.1152/ajpheart.2000.279.4.h1999
  103. Hambrecht R, Wolf A, Gielen S, Linke A, Hofer J, Erbs S, et al. Effect of exercise on coronary endothelial function in patients with coronary artery disease. N Engl J Med 2000;342:454-60. https://doi.org/10.1056/NEJM200002173420702
  104. Maiorana A, O'Driscoll G, Cheetham C, Dembo L, Stanton K, Goodman C, et al. The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol 2001;38:860-6. https://doi.org/10.1016/S0735-1097(01)01439-5
  105. Versari D, Daghini E, Virdis A, Ghiadoni L, Taddei S. Endothelial dysfunction as a target for prevention of cardiovascular disease. Diabetes Care 2009;32 Suppl 2(Suppl 2):S314-21. https://doi.org/10.2337/dc09-S330
  106. Celermajer DS, Sorensen KE, Georgakopoulos D, Bull C, Thomas O, Robinson J, et al. Cigarette smoking is associated with dose-related and potentially reversible impairment of endothelium-dependent dilation in healthy young adults. Circulation 1993;88(5 Pt 1):2149-55. https://doi.org/10.1161/01.CIR.88.5.2149
  107. Celermajer DS, Sorensen K, Ryalls M, Robinson J, Thomas O, Leonard JV, et al. Impaired endothelial function occurs in the systemic arteries of children with homozygous homocystinuria but not in their heterozygous parents. J Am Coll Cardiol 1993;22:854-8. https://doi.org/10.1016/0735-1097(93)90203-d
  108. Sorensen KE, Celermajer DS, Georgakopoulos D, Hatcher G, Betteridge DJ, Deanfield JE. Impairment of endothelium-dependent dilation is an early event in children with familial hypercholesterolemia and is related to the lipoprotein(a) level. J Clin Invest 1994;93:50-5. https://doi.org/10.1172/JCI116983
  109. Tounian P, Aggoun Y, Dubern B, Varille V, Guy-Grand B, Sidi D, et al. Presence of increased stiffness of the common carotid artery and endothelial dysfunction in severely obese children: a prospective study. Lancet 2001;358:1400-4. https://doi.org/10.1016/S0140-6736(01)06525-4
  110. Farpour-Lambert NJ, Aggoun Y, Marchand LM, Martin XE, Herrmann FR, Beghetti M. Physical activity reduces systemic blood pressure and improves early markers of atherosclerosis in pre-pubertal obese children. J Am Coll Cardiol 2009;54:2396-406. https://doi.org/10.1016/j.jacc.2009.08.030
  111. Dias KA, Green DJ, Ingul CB, Pavey TG, Coombes JS. Exercise and vascular function in child obesity: a meta-analysis. Pediatrics 2015;136:e648-59. https://doi.org/10.1542/peds.2015-0616
  112. Green DJ, Walsh JH, Maiorana A, Best MJ, Taylor RR, O'Driscoll JG. Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol 2003;285:H267987.
  113. Niebauer J, Cooke JP. Cardiovascular effects of exercise: role of endothelial shear stress. J Am Coll Cardiol 1996;28:1652-60. https://doi.org/10.1016/S0735-1097(96)00393-2
  114. Tinken TM, Thijssen DH, Hopkins N, Dawson EA, Cable NT, Green DJ. Shear stress mediates endothelial adaptations to exercise training in humans. Hypertension 2010;55:312-8. https://doi.org/10.1161/hypertensionaha.109.146282
  115. Cecelja M, Chowienczyk P. Role of arterial stiffness in cardiovascular disease. JRSM Cardiovasc Dis 2012;1:cvd.2012.012016.
  116. Yamashina A, Tomiyama H, Takeda K, Tsuda H, Arai T, Hirose K, et al. Validity, reproducibility, and clinical significance of noninvasive brachial-ankle pulse wave velocity measurement. Hypertens Res 2002;25:35964.
  117. Laurent S, Cockcroft J, Van Bortel L, Boutouyrie P, Giannattasio C, Hayoz D, et al. Expert consensus document on arterial stiffness: methodological issues and clinical applications. Eur Heart J 2006;27:2588605.
  118. Pereira T, Correia C, Cardoso J. Novel methods for pulse wave velocity measurement. J Med Biol Eng 2015;35:555-65. https://doi.org/10.1007/s40846-015-0086-8
  119. Acree LS, Montgomery PS, Gardner AW. The influence of obesity on arterial compliance in adult men and women. Vasc Med 2007;12:183-8. https://doi.org/10.1177/1358863X07079323
  120. Charakida M, Jones A, Falaschetti E, Khan T, Finer N, Sattar N, et al. Childhood obesity and vascular phenotypes: a population study. J Am Coll Cardiol 2012;60:2643-50. https://doi.org/10.1016/j.jacc.2012.08.1017
  121. Czippelova B, Turianikova Z, Krohova J, Wiszt R, Lazarova Z, Pozorciakova K, et al. Arterial stiffness and endothelial function in young obese patients - vascular resistance matters. J Atheroscler Thromb 2019;26:1015-25. https://doi.org/10.5551/jat.47530
  122. Mestanik M, Jurko A, Spronck B, Avolio AP, Butlin M, Jurko T, et al. Improved assessment of arterial stiffness using corrected cardio-ankle vascular index (CAVI0) in overweight adolescents with white-coat and essential hypertension. Scand J Clin Lab Invest 2017;77:665-72. https://doi.org/10.1080/00365513.2017.1397286
  123. Nagayama D, Imamura H, Sato Y, Yamaguchi T, Ban N, Kawana H, et al. Inverse relationship of cardioankle vascular index with BMI in healthy Japanese subjects: a cross-sectional study. Vasc Health Risk Manag 2016;13:1-9. https://doi.org/10.2147/VHRM.S119646
  124. Vlachopoulos C, Aznaouridis K, Stefanadis C. Prediction of cardiovascular events and all-cause mortality with arterial stiffness: a systematic review and meta-analysis. J Am Coll Cardiol 2010;55:1318-27. https://doi.org/10.1016/j.jacc.2009.10.061
  125. Ashor AW, Lara J, Siervo M, Celis-Morales C, Mathers JC. Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. PLoS One 2014;9:e110034. https://doi.org/10.1371/journal.pone.0110034
  126. Santos-Parker JR, LaRocca TJ, Seals DR. Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ 2014;38:296-307. https://doi.org/10.1152/advan.00088.2014
  127. Lee HY, Oh BH. Aging and arterial stiffness. Circ J 2010;74:2257-62. https://doi.org/10.1253/circj.CJ-10-0910
  128. Cavalcante JL, Lima JA, Redheuil A, Al-Mallah MH. Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 2011;57:1511-22. https://doi.org/10.1016/j.jacc.2010.12.017
  129. Tinken TM, Thijssen DH, Black MA, Cable NT, Green DJ. Time course of change in vasodilator function and capacity in response to exercise training in humans. J Physiol 2008;586:5003-12. https://doi.org/10.1113/jphysiol.2008.158014
  130. Davison KK, Birch LL. Childhood overweight: a contextual model and recommendations for future research. Obes Rev 2001;2:159-71. https://doi.org/10.1046/j.1467-789X.2001.00036.x
  131. Anderson PM, Butcher KE. Childhood obesity: trends and potential causes. Future Child 2006;16:19-45. https://doi.org/10.1353/foc.2006.0001
  132. Obarzanek E, Schreiber GB, Crawford PB, Goldman SR, Barrier PM, Frederick MM, et al. Energy intake and physical activity in relation to indexes of body fat: the National Heart, Lung, and Blood Institute Growth and Health Study. Am J Clin Nutr 1994;60:15-22. https://doi.org/10.1093/ajcn/60.1.15
  133. Goran MI, Hunter G, Nagy TR, Johnson R. Physical activity related energy expenditure and fat mass in young children. Int J Obes Relat Metab Disord 1997;21:171-8. https://doi.org/10.1038/sj.ijo.0800383
  134. Fogelholm M, Nuutinen O, Pasanen M, Myohanen E, Saatela T. Parent-child relationship of physical activity patterns and obesity. Int J Obes Relat Metab Disord 1999;23:1262-8. https://doi.org/10.1038/sj.ijo.0801061
  135. Garcia-Hermoso A, Saavedra JM, Escalante Y, Sanchez-Lopez M, Martinez-Vizcaino V. Endocrinology and Adolescence: aerobic exercise reduces insulin resistance markers in obese youth: a meta-analysis of randomized controlled trials. Eur J Endocrinol 2014;171:R163-71. https://doi.org/10.1530/EJE-14-0291
  136. Jamurtas AZ, Stavropoulos-Kalinoglou A, Koutsias S, Koutedakis Y, Fatouros I. Adiponectin, resistin, and visfatin in childhood obesity and exercise. Pediatr Exerc Sci 2015;27:454-62. https://doi.org/10.1123/pes.2014-0072
  137. Twig G, Yaniv G, Levine H, Leiba A, Goldberger N, Derazne E, et al. Body-mass index in 2.3 million adolescents and cardiovascular death in adulthood. N Engl J Med 2016;374:2430-40. https://doi.org/10.1056/NEJMoa1503840
  138. Barry VW, Baruth M, Beets MW, Durstine JL, Liu J, Blair SN. Fitness vs. fatness on all-cause mortality: a meta-analysis. Prog Cardiovasc Dis 2014;56:382-90. https://doi.org/10.1016/j.pcad.2013.09.002
  139. Kelley GA, Kelley KS. Effects of aerobic exercise on non-high-density lipoprotein cholesterol in children and adolescents: a meta-analysis of randomized controlled trials. Prog Cardiovasc Nurs 2008;23:128-32. https://doi.org/10.1111/j.1751-7117.2008.00002.x
  140. Kelley GA, Kelley KS. Aerobic exercise and lipids and lipoproteins in children and adolescents: a meta-analysis of randomized controlled trials. Atherosclerosis 2007;191:447-53. https://doi.org/10.1016/j.atherosclerosis.2006.04.019
  141. Lee KJ, Shin YA, Lee KY, Jun TW, Song W. Aerobic exercise training-induced decrease in plasma visfatin and insulin resistance in obese female adolescents. Int J Sport Nutr Exerc Metab 2010;20:275-81. https://doi.org/10.1123/ijsnem.20.4.275
  142. Sung KD, Pekas EJ, Scott SD, Son WM, Park SY. Correction to: the effects of a 12-week jump rope exercise program on abdominal adiposity, vasoactive substances, inflammation, and vascular function in adolescent girls with prehypertension. Eur J Appl Physiol 2020;120:1203. https://doi.org/10.1007/s00421-020-04339-z
  143. Taylor WC, Yancey AK, Leslie J, Murray NG, Cummings SS, Sharkey SA, et al. Physical activity among African American and Latino middle school girls: consistent beliefs, expectations, and experiences across two sites. Women Health 1999;30:67-82. https://doi.org/10.1300/J013v30n02_05
  144. Robbins LB, Pender NJ, Kazanis AS. Barriers to physical activity perceived by adolescent girls. J Midwifery Womens Health 2003;48:206-12. https://doi.org/10.1016/S1526-9523(03)00054-0
  145. Matos N, Winsley RJ. Trainability of young athletes and overtraining. J Sports Sci Med 2007;6:353-67.
  146. Willis LH, Slentz CA, Bateman LA, Shields AT, Piner LW, Bales CW, et al. Effects of aerobic and/or resistance training on body mass and fat mass in overweight or obese adults. J Appl Physiol (1985) 2012;113:1831-7. https://doi.org/10.1152/japplphysiol.01370.2011
  147. Westcott WL. Resistance training is medicine: effects of strength training on health. Curr Sports Med Rep 2012;11:209-16. https://doi.org/10.1249/JSR.0b013e31825dabb8
  148. Di Meo S, Iossa S, Venditti P. Improvement of obesity-linked skeletal muscle insulin resistance by strength and endurance training. J Endocrinol 2017;234:R159-81. https://doi.org/10.1530/JOE-17-0186
  149. Lee S, Bacha F, Hannon T, Kuk JL, Boesch C, Arslanian S. Effects of aerobic versus resistance exercise without caloric restriction on abdominal fat, intrahepatic lipid, and insulin sensitivity in obese adolescent boys: a randomized, controlled trial. Diabetes 2012;61:2787-95. https://doi.org/10.2337/db12-0214
  150. Lee S, Deldin AR, White D, Kim Y, Libman I, Rivera-Vega M, et al. Aerobic exercise but not resistance exercise reduces intrahepatic lipid content and visceral fat and improves insulin sensitivity in obese adolescent girls: a randomized controlled trial. Am J Physiol Endocrinol Metab 2013;305:E1222-9. https://doi.org/10.1152/ajpendo.00285.2013
  151. Lee S, Kim Y, Kuk JL. What is the role of resistance exercise in improving the cardiometabolic health of adolescents with obesity? J Obes Metab Syndr 2019;28:76-91. https://doi.org/10.7570/jomes.2019.28.2.76
  152. Piercy KL, Troiano RP, Ballard RM, Carlson SA, Fulton JE, Galuska DA, et al. The physical activity guidelines for Americans. JAMA 2018;320:2020-8. https://doi.org/10.1001/jama.2018.14854
  153. Ruiz JR, Sui X, Lobelo F, Morrow JR Jr, Jackson AW, Sjostrom M, et al. Association between muscular strength and mortality in men: prospective cohort study. BMJ 2008;337:a439. https://doi.org/10.1136/bmj.a439
  154. Ruiz JR, Sui X, Lobelo F, Lee DC, Morrow JR Jr, Jackson AW, et al. Muscular strength and adiposity as predictors of adulthood cancer mortality in men. Cancer Epidemiol Biomarkers Prev 2009;18:1468-76. https://doi.org/10.1158/1055-9965.EPI-08-1075
  155. Santos AP, Marinho DA, Costa AM, Izquierdo M, Marques MC. The effects of concurrent resistance and endurance training follow a detraining period in elementary school students. J Strength Cond Res 2012;26:1708-16. https://doi.org/10.1519/jsc.0b013e318234e872
  156. Schwingshackl L, Dias S, Strasser B, Hoffmann G. Impact of different training modalities on anthropometric and metabolic characteristics in overweight/obese subjects: a systematic review and network meta-analysis. PLoS One 2013;8:e82853. https://doi.org/10.1371/journal.pone.0082853
  157. Schwingshackl L, Missbach B, Dias S, Konig J, Hoffmann G. Impact of different training modalities on glycaemic control and blood lipids in patients with type 2 diabetes: a systematic review and network meta-analysis. Diabetologia 2014;57:1789-97. https://doi.org/10.1007/s00125-014-3303-z
  158. Garcia-Hermoso A, Ramirez-Velez R, Ramirez-Campillo R, Peterson MD, Martinez-Vizcaino V. Concurrent aerobic plus resistance exercise versus aerobic exercise alone to improve health outcomes in paediatric obesity: a systematic review and meta-analysis. Br J Sports Med 2018;52:161-6. https://doi.org/10.1136/bjsports-2016-096605
  159. Lee S, Libman I, Hughan K, Kuk JL, Jeong JH, Zhang D, et al. Effects of exercise modality on insulin resistance and ectopic fat in adolescents with overweight and obesity: a randomized clinical trial. J Pediatr 2019;206:91-8.e1. https://doi.org/10.1016/j.jpeds.2018.10.059
  160. Galan-Lopez P, Ries F. Motives for exercising and associations with body composition in icelandic adolescents. Sports (Basel) 2019;7:149. https://doi.org/10.3390/sports7060149

Cited by

  1. Cohort profile: National Investigation of Birth Cohort in Korea study 2008 (NICKs-2008) vol.64, pp.9, 2021, https://doi.org/10.3345/cep.2020.01284