• 제목/요약/키워드: theory of equation

Search Result 2,383, Processing Time 0.033 seconds

CIRCULAR SPECTRUM AND ASYMPTOTIC PERIODIC SOLUTIONS TO A CLASS OF NON-DENSELY DEFINED EVOLUTION EQUATIONS

  • Le Anh Minh;Nguyen Ngoc Vien
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1153-1162
    • /
    • 2023
  • In this paper, for the bounded solution of the non-densely defined non-autonomous evolution equation, we present the condition for asymptotic periodicity by using the circular spectral theory of functions on the half line and the extrapolation theory of non-densely defined evolution equation.

A REGULARITY THEOREM FOR THE INITIAL TRACES OF THE SOLUTIONS OF THE HEAT EQUATION

  • Chung, Soon-Yeong
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.4
    • /
    • pp.1039-1046
    • /
    • 1996
  • In the theory of partial differential equations with given initial values and boundary values one usually investigates to examine the well-posedness, that is, the unique existence of the solution as well as its continuous dependence on the data. This theory is strong enough for us to determine the situation anywhere and anytime provided that the initial data are actually given. However, in many cases the data are not completely known for us. Then in those situations arise the new problem to determine the unknown initial data by taking other conditions for the solutions.

  • PDF

ON SOME SPECIAL DIFFERENCE EQUATIONS OF MALMQUIST TYPE

  • Zhang, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.1
    • /
    • pp.51-61
    • /
    • 2018
  • In this article, we mainly use Nevanlinna theory to investigate some special difference equations of malmquist type such as $f^2+({\Delta}_cf)^2={\beta}^2$, $f^2+({\Delta}_cf)^2=R$, $f{^{\prime}^2}+({\Delta}_cf)^2=R$ and $f^2+(f(z+c))^2=R$, where ${\beta}$ is a nonzero small function of f and R is a nonzero rational function respectively. These discussions extend one related result due to C. C. Yang et al. in some sense

The Characterization of Optimal Control Using Delay Differential Operator

  • Shim, Jaedong
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.7 no.1
    • /
    • pp.123-139
    • /
    • 1994
  • In this paper we are concerned with optimal control problems whose costs are quadratic and whose states are governed by linear delay differential equations and general boundary conditions. The basic new idea of this paper is to introduce a new class of linear operators in such a way that the state equation subject to a starting function can be viewed as an inhomogeneous boundary value problem in the new linear operator equation. In this way we avoid the usual semigroup theory treatment to the problem and use only linear operator theory.

  • PDF

NONLINEAR BIHARMONIC EQUATION WITH POLYNOMIAL GROWTH NONLINEAR TERM

  • JUNG, TACKSUN;CHOI, Q-HEUNG
    • Korean Journal of Mathematics
    • /
    • v.23 no.3
    • /
    • pp.379-391
    • /
    • 2015
  • We investigate the existence of solutions of the nonlinear biharmonic equation with variable coefficient polynomial growth nonlinear term and Dirichlet boundary condition. We get a theorem which shows that there exists a bounded solution and a large norm solution depending on the variable coefficient. We obtain this result by variational method, generalized mountain pass geometry and critical point theory.

POSITIVE SOLUTIONS OF BOUNDARY VALUE PROBLEMS FOR p-LAPLACIAN WITH SIGN-CHANGING NONLINEAR TERMS

  • Li, Xiangfeng;Xu, Wanyin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.2
    • /
    • pp.411-422
    • /
    • 2010
  • By using the fixed point index theory, we investigate the existence of at least two positive solutions for p-Laplace equation with sign-changing nonlinear terms $(\varphi_p(u'))'+a(t)f(t,u(t),u'(t))=0$, subject to some boundary conditions. As an application, we also give an example to illustrate our results.

NONLINEAR BIHARMONIC PROBLEM WITH VARIABLE COEFFICIENT EXPONENTIAL GROWTH TERM

  • Choi, Q-Heung;Jung, Tacksun
    • Korean Journal of Mathematics
    • /
    • v.18 no.3
    • /
    • pp.277-288
    • /
    • 2010
  • We consider the nonlinear biharmonic equation with coefficient exponential growth term and Dirichlet boundary condition. We show that the nonlinear equation has at least one bounded solution under the suitable conditions. We obtain this result by the variational method, generalized mountain pass theorem and the critical point theory of the associated functional.

RICCATI EQUATION IN QUADRATIC OPTIMAL CONTROL PROBLEM OF DAMPED SECOND ORDER SYSTEM

  • Ha, Junhong;Nakagiri, Shin-Ichi
    • Journal of the Korean Mathematical Society
    • /
    • v.50 no.1
    • /
    • pp.173-187
    • /
    • 2013
  • This paper studies the properties of solutions of the Riccati equation arising from the quadratic optimal control problem of the general damped second order system. Using the semigroup theory, we establish the weak differential characterization of the Riccati equation for a general class of the second order distributed systems with arbitrary damping terms.

Flexible 효과를 고려한 다물체 시스템의 동역학적 해석에 관한 연구

  • 최승렬;한창수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.10a
    • /
    • pp.349-353
    • /
    • 1992
  • The purpose of this paper is to develop methods for the dynamic analysis of multibody system that consist of interconnected rigid and deformable component. The equations of motion are derived by using the Lagrange's equation and finite element theory for the elastic mechanism systems. The type of equation of motion is the differential algebraic equation included kinematic nonlinear algebraic equation. The generalized coordinate partitioning method is used for solving this equation. To show the validity of this analysis solver, couple of models were canalized and those results were compared with the commercial package(ADAMS).