• Title/Summary/Keyword: theoretical analyses

Search Result 838, Processing Time 0.026 seconds

Land-use/Transportation System Dynamics Model (System Dynamics에 의한 토지이용(土地利用)-교통(交通) System분석(分析))

  • Kim, Dae Eung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.63-74
    • /
    • 1984
  • The system dynamics is a systematic method supplemented by the decision making Process of management to the numerical and theoretical analyses in the field of the operation research or the industrial engineering. The system dyamics seems to be one of the most useful mathematical methods for forecasting the future social system or for evaluating the alternative plans. Land-use/transportation system dynamics model is constructed from the urban activity generation model based on the economic base hyphothesis using the DYNAMO simulation language. The model was applied to Daegu city and showed the validity.

  • PDF

Size effect on tensile strength of filament wound CFRP composites (필라멘트 와인딩 탄소섬유 복합재의 인장강도 크기 효과)

  • Hwang, T.K.;Doh, Y.D.;Kim, H.G.
    • Composites Research
    • /
    • v.24 no.5
    • /
    • pp.1-8
    • /
    • 2011
  • This paper presents the results of theoretical analysis and experimental test to show the size effect on the fiber strength of filament would pressure vessel. First, a series of fully scaled hoop ring tests with filament would carbon-epoxy were conducted, which exhibited a remarkable size effect on the fiber strength. Next, the failure analyses using WWLM(Weibull Weakest Link Model) and the SMFM(Sequential Multi-step Failure Model) were performed and compared to the hoop ring test data, as well as to unidirectional specimens test data from the literature. It was found that the analysis results significantly underestimated the fiber strengths compared to the test data. In this study, a modified SMFM was proposed through the modification of the length size effect. The fiber strengths from modified SMFM analysis showed good agreement with the test data.

The Effects of Meeting Modes and Task Types on Group Decision Making in a GSS Environment (GSS 환경에서 회의방식과 과업유형이 그룹의사결정에 미치는 영향)

  • Ryu, Il;Kim, Jae-Jon
    • Asia pacific journal of information systems
    • /
    • v.9 no.2
    • /
    • pp.151-168
    • /
    • 1999
  • The objective of this study is to investigate the effects of different meeting modes and task types on the outcomes of group decision making. The hypotheses postulate the potential effects of different meeting modes on appropriation process; different meeting modes on group outcomes; and the appropriation process on group outcomes. A laboratory experiment was conducted. A GSS was developed using Lotus Notes for this experiment. The results provide partial support for the hypotheses derived from the theoretical model. The interaction effects between meeting modes and tasks are not always observed in the analyses. However, groups using a face-to-face meeting mode in negotiation task reach significantly higher levels of perceived outcome quality, of satisfaction with the outcome, and of satisfaction with the process than groups using a dispersed-synchronous meeting mode. It suggests that a face-to-face meeting mode can enhance the effectiveness of groups working on a negotiation task such as stakeholder analysis. Furthermore, the manner in which groups appropriate the technology significantly influence the group performance. The results support the validity and usefulness of the IRT and the AST as a GSS research framework.

  • PDF

Evaluation of Stiffness Matrix of 3-Dimensional Elements for Isotropic and Composite Plates (등방성 및 복합재 플레이트용 16절점 요소의 강성행렬 계산)

  • 윤태혁;김정운;이재복
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.10
    • /
    • pp.2640-2652
    • /
    • 1994
  • The stiffness of 6-node isotropic element is stiffer than that of 8-node isotropic element of same configuration. This phenomenon was called 'Relative Stiffness Stiffening Phenomenon'. In this paper, an equation of sampling point modification which correct this phenomenon was derived for the composite plate, as well as an equation for an isotropic plate. The relative stiffness stiffening phenomena of an isotropic plate element could be corrected by modifying Gauss sampling points in the numerical integration of stiffness matrix. This technique could also be successfully applied to the static analyses of composite plate modeled by the 3-dimensional 16-node elements. We predicted theoretical errors of stiffness versus the number of layers that result from the reduction of numerical integration order. These errors coincide very well with the actual errors of stiffness. Therefore, we can choose full integration of reduced integration based upon the permissible error criterion and the number of layers by using the thoretically predicted error.

Transparency Implementation for Bilateral Teleoperation System by using Two-channel Control Architecture (2채널 제어 구조를 사용한 양방향 원격조종 시스템의 투명도 구현)

  • Kim, Jong-Hyun;Chang, Pyung-Hun;Park, Hyung-Soon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.11
    • /
    • pp.1967-1978
    • /
    • 2003
  • Transparency has been considered as a performance measure in bilateral teleoperation system. Therefore, many issues of transparency have been studied. This paper investigates the transparency in two-channel control architectures. At first, we show the feasibility using analytic transparency-conditions and present the two classes of two-channel control architecture, which are perfectly transparent under ideal situation. In addition, remedies to problems due to impedance model estimation errors under real situation are introduced. They are as fellows; design guideline of control parameters to reduce the effect of model estimation error effect and introduction of time delay estimation for unknown dynamics. From these analyses, the systematic control scheme, which is stable and well transparent under real implementation, is proposed in two-channel control architecture. Finally, the proposed scheme is applied to a 2 D.O.F master-slave system and the experimental results show the validity of the theoretical work.

Computations of the Supersonic Ejector Flows with the Second Throat (2차목을 가지는 초음속 이젝터 유동에 관한 수치계산)

  • Choi, Bo-Gyu;Lee, Young-Ki;Kim, Heuy-Dong;Kim, Duck-Jool
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.8
    • /
    • pp.1128-1138
    • /
    • 2000
  • Pumping action in ejector systems is generally achieved through the mixing of a high-velocity and high-energy stream with a lower-velocity and lower-energy stream within a duct. The design and performance evaluation of the ejector systems has developed as a combination of scale-model experiments, empiricism and theoretical analyses applicable only to very simplified configurations, because of the generic complexity of the flow phenomena. In order to predict the detailed performance characteristics of such systems, the flow phenomena throughout the operating regimes of the ejector system should be fully understood. This paper presents the computational results for the two-dimensional supersonic ejector system with a second throat. The numerical simulations are based on a fully implicit finite volume scheme of the compressible Reynolds-averaged Navier-Stokes equation in a domain that extends from the stagnation chamber to the diffuser exit. For a wide range of the operating pressure ratio the flow field inside the ejector system is investigated in detail. The results show that the supersonic ejector systems have an optimal throat area for the operating pressure ratio to be minimized.

The effects of special metallic dampers on the seismic behavior of a vulnerable RC frame

  • Ozkaynak, Hasan
    • Structural Engineering and Mechanics
    • /
    • v.61 no.4
    • /
    • pp.483-496
    • /
    • 2017
  • Earthquake excitations may induce important amount of seismic energy into structures. Current design philosophy mainly deals with the plastic deformations of replaceable energy dissipating devices rather than damages accumulated on structural members. Since earthquake damage is substantially concentrated on these devices they could be replaced after severe earthquakes. In this study, the efficiency of steel cushion (SC) on seismic improvement of a vulnerable reinforced concrete (RC) frame is determined by means of several numerical simulations. The cyclic shear behaviors of SCs were determined by performing quasi-static tests. The test results were the main basis of the theoretical model of SCs which were used in the numerical analysis. These analyses were performed on three types of RC frames namely bare frame (BF), full-braced frame (F-BF) and semi-braced frame (S-BF). According to analysis results; implementation of SCs has considerable effects in reducing the storey shear forces and storey drifts. Moreover plastic energy demands of structural elements were reduced which indicates a significant improvement in seismic behavior of the RC frame preventing damage accumulation on structural elements. Full-braced frame having SCs with the thickness of 25 mm has better performance than semi-braced frame interms of energy dissipation. However, global energy dissipation demand of S-BF and F-BF having SCs with the thickness of 18 mm are almost similar.

Variations of 'Rightward Bias' with Typhoon Using an Ideal 3D Primitive Equation Numerical Model (3차원 수치모델상에서 태풍통과시 '우측쏠림현상')

  • Hong, Chul-Hoon;Masuda, Akira;Hirose, Naoki
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.53 no.4
    • /
    • pp.637-649
    • /
    • 2020
  • An ideal 3D primitive equation model is implemented to investigate upper ocean response to typhoons, focusing on rightward bias (RWB) which means an appearance of an intensified sea surface cooling to the right side of the typhoon track. The model has 26-stratified levels and a flat bottom (1000 m), covering a rectangular domain of about 3,060 km×3,300 km with four open boundaries. The sea water is forced by an atmospheric pressure and a gradient wind of the typhoon. The model well reproduces the RWB in previous observations and theoretical analyses. For the fast moving typhoon (FMT) (-8m/sec), the model shows that in the mixed layer (ML), the RWB in the SST noticeably appears clearly illustrating the coupling between inertial motion and wind stress, but in the subsurface layer (-100m), the RWB does not emerge since a cyclonic current field (CCF) caused by wind stress curl is primarily dominant. For the slowly moving typhoon (SMT) (-3m/sec), however, the RWB does not emerge because the coupling is weakened and the CCF is rather predominant even in the ML. In the model, we conclude that the RWB noticeably emerges in the FMT but does not emerge in the SMT related to predominance of CCF.

Concept Development Using Hybrid Model for the Concept, Patient Respect (환자 존중 개념 개발)

  • Yoo, Myoung-Ran
    • Korean Journal of Adult Nursing
    • /
    • v.15 no.1
    • /
    • pp.137-145
    • /
    • 2003
  • Purpose: This research is a descriptive study to explore "patient respect" in nursing. Respect was analyzed as a concept in the domain of the patient. The Hybrid Model suggested by Schwartz-Barcott and Kim was used in this study. Method: For the theoretical phase, nursing and other literature were reviewed to analyze attributes and develop a working definition of the concept, respect. For the fieldwork phase, four subjects in two general hospitals in Seoul participated. With the participants' permission, the data was collected between January and April, 2002, through in-depth interview and participant observation. The data analysis progressed at the same time as the fieldwork. Data analysis proceeded according to the analysis method of Strauss and Corbin. Result: The final attributes of patient respect are suggested by consideration, recognition, cordial treatment, concern, honesty, acceptance. The final definition of patient respect as a concept in the domain the of patient is suggested by "Patient respect is that the patient is recognized as an individual with worth and is accepted, and considered to be that kind of an individual person. In addition, the patient is recognized to be an independent person and is treated with concern and honesty." Conclusion: The results of the analyses is helpful in integrating into a comprehensive description of the concept, Patient Respect.

  • PDF

Thermal Characteristics and Frequency Analysis of a High Speed Spindle for Small Tapping Center (소형 태핑센터 주축의 열특성 및 주파수 분석)

  • Choi, Dae-Bong;Kim, Soo-Tae;Ro, Seung-Kook;Cho, Hyun-Taek
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.11 no.2
    • /
    • pp.105-111
    • /
    • 2012
  • High speed machining is the core technology that influences the performance of machine tools, and the high speed motor spindle is widely used for the high speed machine tools. The important problem in high speed spindle is to minimize the thermal effect by motor and bearing and frequency effect. This paper presents the thermal characteristic analysis and frequency experiment for a high speed spindle considering the flow rate of cooling oil. A high speed spindle is composed of angular contact ceramic ball bearings, high speed built-in motor, oil cooling jacket and so on. The thermal analyses of high speed spindle need to minimize the thermal effect and maximize the cooling effect and they are carried out under the various cooling conditions. Heat generations of the bearing and the high speed motor are estimated from the theoretical and experimental data. To find out the characteristic of vibration, the high speed spindle is excited in operational range. This result can be applied to the design and manufacture of a high speed tapping spindle.