• Title/Summary/Keyword: the tropical western Pacific

Search Result 107, Processing Time 0.027 seconds

ENSO Response to Global Warming as Simulated by ECHO-G/S (ECHO-G/S에 나타난 기후변화에 따른 엘니뇨 변화 특성 분석)

  • Lee, Hyo-Shin;Kwon, Won-Tae;Ahn, Joong-Bae;Boo, Kyung-On;Ch, Yu-Mi
    • Atmosphere
    • /
    • v.17 no.4
    • /
    • pp.365-379
    • /
    • 2007
  • Global warming may shift the properties and dynamics of ENSO. We study the changes in ENSO characteristics in a coupled general circulation model, ECHO-G/S. First, we analyse the mean state changes by comparing present day simulation and various high $CO_2$ climates. The model shows a little El Nino-like changes in the sea surface temperature and wind stress in the eastern tropical Pacific. As the mean temperature rises, the ENSO amplitude and the frequency of strong El Ninos and La Nina decrease. The analysis shows that the weakening of the oceanic sensitivities is related to the weakening of ENSO. In addition to the surface changes, the remote subsurface sea temperature response in the western Pacific to the wind stress in the eastern Pacific influences the subsequent ENSO amplitude. However, ENSO amplitude does not show linear response to the greenhouse gas concentrations.

Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency (북대서양 진동과 북서태평양 태풍발생빈도와의 관계)

  • Choi, Ki-Seon;Park, Sangwook;Chang, Ki-Ho;Lee, Jong-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.3
    • /
    • pp.224-234
    • /
    • 2013
  • This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relationship, the mean difference between the highest positive NAO years and the lowest negative NAO years was analyzed by dividing into when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included and when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included. When the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included, for the positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for the negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for the positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they get weaken or disappear shortly while landing on the southern coast of China and the Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included.

The 40~50Day Intraseasonal Oscillation of the Geostationary Meteorological Satellite High Cloud Amount (GMS 상층운량의 40~50일 계절만 진동)

  • 하경자;서애숙
    • Journal of Environmental Science International
    • /
    • v.5 no.5
    • /
    • pp.619-633
    • /
    • 1996
  • Intraseasonal variability of the tropical convection over the Indian/western Pacific is studied using the Geostationary Meteorological Satellite high cloud amount. This study is directed to find the tropical-extratropical interaction in the frequency range of intraseasonal and interannual variabilities of the summer monsoon occured over the domain of 90E-171W and 495-50N. Especially, in order to investigate the intraseasonal interaction of last Asia summer monsoon associated with the tropical convections in the high cloud amounts, the spatial and time structure of the intraseasonal oscillation for the movement-and the evolution of the large-scale connections are studied. To describe the spatial and the time evolution, the extended empirical orthogonal function analysis is applied. The first mode may be considered to a normal structure, indicating that the strong convection band over 90E-120E is extended to sastward but this mode was detected as the intraseasonal variability during summer monsoon. It is found that the dominant intraseasonal mode of the tropical convection consists of the spatial changes over a broad period range centered around 40~50days.

  • PDF

Characteristics of the Gross Moist Stability in the Tropics and Its Future Change (열대 지역 Gross Moist Stability 특징 분석 및 미래 변화)

  • Kim, Hye-Won;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.24 no.2
    • /
    • pp.141-150
    • /
    • 2014
  • This study investigates the characteristics of the Gross Moist Stability (GMS) over the tropics. The GMS summarizes the relationship between large-scale entropy forcing due to radiation and surface fluxes and the response of smaller-scale convection. The GMS is able to explain both to where moist entropy is advected by the atmospheric circulation and how deep the moisture flux convergence is in the tropical region. In the deep convective region, positive GMS appears over the warm pool region due to the strong column-integrated moisture convergence and the ensuing export of moist entropy to the environment. The vertical advection of moist entropy dominates over the horizontal advection in this region. Meanwhile, over the eastern tropical ITCZ region, which is characterized by shallow convective area, import of moist entropy by horizontal winds is dominant compared to the vertical moist entropy advection. Future changes in the GMS are also examined using the 22 CMIP5 model simulations. A decrease in the GMS appears widely across the tropics, but its increase occurs over the western-central equatorial Pacific. It is evident that the increased GMS region corresponds to an increased region of precipitation, implying that strengthened convection in the future due to increased entropy forcing exports the enhanced moist energy to stabilize the environment.

Experimental Study for Influence of Summertime Heat Sources and Basic States on Rossby Wave Propagation (여름철 열원과 기본장이 로스비 파동전파에 미치는 영향에 대한 실험 연구)

  • Kim, Seong-Yeol;Ha, Kyung-Ja;Yun, Kyung-Sook
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.505-518
    • /
    • 2010
  • We investigated the impacts of the diabatic heating location, vertical profile and basic state on the Rossby wave propagation. To examine the dynamical process of individual responses on the regional heat source, a dry version of the linear baroclinic model was used with climatological summertime (JJA) mean basic state and vertical structure of the diabatic heating for 1979-2008. Two sets of diabatic heating were constructed of those positioned in the mid-latitudes (Tibetan Plateau, eastern Mediterranean Sea, and the west-central Asia) and the tropics (the southern India, Bay of Bengal, and western Pacific). It was found that using the principal component analysis, atmospheric response to diabatic heating reaches to the steady state in 19th days in time. The prescribed mid-latitude forcing forms equivalent barotropic Rossby wave propagation along the westerly Asia jets, whereas the tropical forcing generates the Rossby wave train extending from the tropics to mid-latitudes. In relation to the maximum vertical profile, the mid-level forcing reveals a stronger response than the lower-level forcing, which may be caused by more effective Rossby wave response by the upper-level divergent flow. Under the different sub-seasonal mean state, both of the tropical and mid-latitude forcing induce the different sub-seasonal response intensity, due to the different basic-state wind.

Change of TC Activity Around Korea by Arctic Oscillation Phase (북극진동의 위상에 따른 한국 부근에서의 태풍 활동 변화)

  • Choi, Ki-Seon;Kim, Tae-Ryong
    • Atmosphere
    • /
    • v.20 no.4
    • /
    • pp.387-398
    • /
    • 2010
  • This study shows that frequency of tropical cyclone (TC) around Korea in summer (June-September) has positive relation with Arctic Oscillation (AO) in the preceding April. In a positive AO phase, each of anomalous cyclone and anomalous anticyclone is developed in low latitude and middle latitude regions of East Asia from the preceding April to summer. As a result, while anomalous southeasterly around Korea serves as a steering flow that TCs move toward this area is strengthened, northwesterly that reinforced in southeastern area of East Asia plays a role in preventing TCs from moving toward this area. In addition, due to this distribution of pressure systems developed in this AO phase, TCs tend to occur, move and recurve in further northeastern region in the western North Pacific than TCs in a negative AO phase. On the contrary, TCs in a negative AO phase mainly move westward toward southern China or Indochina Peninsula from Philippines. Eventually, intensity of TCs is weaker than those in a positive AO phase due to the terrain effect caused by high passage frequency of TCs in mainland China.

A Study on the Characteristics of Tropical Cyclone Passage Frequency over the Western North Pacific using Empirical Orthogonal Function (경험적 직교함수를 이용한 북서태평양 열대저기압의 이동빈도 특성에 관한 연구)

  • Choi, Ki-Seon;Kang, Ki-Ryong;Kim, Do-Woo;Hwang, Ho-Seong;Lee, Sang-Ryong
    • Journal of the Korean earth science society
    • /
    • v.30 no.6
    • /
    • pp.721-733
    • /
    • 2009
  • A pattern of tropical cyclone (TC) movement in the western North Pacific area was studied using the empirical orthogonal function (EOF) and the best track data from 1951 to 2007. The independent variable used in this study was defined as the frequency of tropical cyclone passage in 5 by 5 degree grid. The $1^{st}$, $2^{nd}$ and $3^{rd}$ modes were the east-west, north-south and diagonal variation patterns. Based on the time series of each component, the signs of first and second mode changed in 1997 and 1991, respectively, which seems to be related to the fact that the passage frequency was higher in the South China Sea for 20 years before 1990s, and recent 20 years in the East Asian area. When the eigen vectors were negative values in the first and second modes and TC moves into the western North Pacific, TC was formed mainly at the east side relatively compared to the case of the positive eigen vectors. The first mode seems to relate to the pressure pattern at the south of Lake Baikal, the second mode the variation pattern around $30^{\circ}N$, and the third mode the pressure pattern around Japan. The first mode was also closely related to the ENSO and negatively related to the $Ni\tilde{n}o$-3.4 index in the correlation analysis with SST anomalies.

A Simple Introduction of Extratropical Transition of Tropical Cyclone (TC) and a Case Study on the Latest Three TCs: Shanshan (0613), Yaki (0614), and Soulik (0618) (태풍의 온대성 저기압화에 대한 간단한 소개 및 최근 세 태풍의 사례분석: 산산(0613), 야기(0614), 솔릭(0618)을 중심으로)

  • Choi, Ki-Seon;Kim, Baek-Jo
    • Journal of the Korean earth science society
    • /
    • v.28 no.7
    • /
    • pp.947-956
    • /
    • 2007
  • In this article, the extratropical transition (ET) of tropical cyclone (TC) was investigated based on the case study covering the latest three TCs (Shanshaa Yaki, and Soulik) associated with ET evolution (onset and completion) using the objective 37 diagnostics of Evans and Hart (2003) and Hart (2003). At 500-hPa level, on an onset of ET, all three TCs entered the baroclinic zone. In a vertical cross-section analysis, three TCs before and at an onset of ET kept warm and humid throughout all levels around the TC center. However, these TCs after ET onset became relatively cold and dry over the western part of TC as the typical characteristics of ET concept model. Although our case study was not sufficient, it is concluded that the diagnostics of the ET onset and atmospheric structure change associated with Evans and Hart (2003) and Hart (2003) will be useful in ET operational forecast.

Integrating extreme weather systems induced from typhoons and monsoon in nonstationary frequency analysis

  • Lee, Taesam;So, Chanyoung
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2016.05a
    • /
    • pp.15-15
    • /
    • 2016
  • In South Korea, annual maximum precipitation often occurs in association with mature typhoons in the western Pacific and from summer monsoon rains. In addition, certain years have no significant typhoon activity. Therefore, the characteristics of frequency distributions differ between extreme typhoons and monsoon events. Those extremes are also influenced from climate conditions in a different way. Application of nonstationary frequency analysis to the AMP data combined with typhoon and monsoon events might not always be reasonable. Therefore, we propose a novel approach of nonstationary frequency analysis to integrate extreme events of AMP induced from two main sources such as typhoons and monsoon in the current study. In this way, we were able to model the nonstationarity of extreme events from tropical storms and monsoon separately.

  • PDF

Impact of IODM and ENSO on the East Asian Monsoon: Simulations through NCAR Community Atmospheric Model (동아시아 몬순 지역에서 IODM과 ENSO의 영향 : NCAR Community Atmospheric Model을 이용한 모의 실험)

  • Oh J.-H.;Chaudhari H. S.;Kripalani R. H.
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.7 no.4
    • /
    • pp.240-249
    • /
    • 2005
  • The normal Indian Ocean is characterized by warmer waters over the eastern region and cooler waters over the western region. Changes in sea surface temperature (SST) over the western and eastern Indian Ocean give birth to a phenomenon now referred to as the Indian Ocean Dipole Mode (IODM). The positive phase of this mode is characterized by positive SST anomalies over the western Indian Ocean and negative anomalies over the southeastern Indian Ocean, while the negative phase is characterized by a reversed SST anomaly pattern. On the other hand, the normal Pacific Ocean has warm (cool) waters over the western (eastern) parts. Positive (negative) SST anomalies over the central/eastern (western) Pacific Ocean characterize the E1 Nino phenomenon. The reverse situation leads to the La Nina phenomenon. The coupled ocean-atmosphere phenomenon over the Pacific is referred to as the E1 Nino Southern Oscillation (ENSO) phenomenon. In this study the impact of IODM and ENSO on the East Asian monsoon variability has been studied using observational data and using the Community Atmospheric Model (CAM) of the National Center for Atmospheric Research (NCAR). Five sets of model experiments were performed with anomalous SST patterns associated with IODM/ENSO superimposed on the climatological SSTs. The empirical and dynamic approaches reveal that it takes about 3-4 seasons fur the peak IODM mode to influence the summer monsoon activity over East Asia. On the other hand, the impact of ENSO on the East Asian monsoon could occur simultaneously. Further, the negative (positive) phase of IODM and E1 Nino (La Nina) over the Pacific enhances (suppresses) monsoon activity over the Korea-Japan Sector. Alternatively, IODM appears to have no significant impact on monsoon variability over China. However, El Nino (La Nina) suppresses (enhances) monsoon activity over China. While the IODM appears to influence the North Pacific subtropical high, ENSO appears to influence the Aleutian low over the northwest Pacific. Thus, the moisture supply towards East Asia from the Pacific is determined by the strengthening/weakening of the subtropical high and the Aleutian low.