DOI QR코드

DOI QR Code

Possible Relationship between NAO and Western North Pacific Typhoon Genesis Frequency

북대서양 진동과 북서태평양 태풍발생빈도와의 관계

  • Choi, Ki-Seon (National Typhoon Center, Korea Meteorological Administration) ;
  • Park, Sangwook (National Typhoon Center, Korea Meteorological Administration) ;
  • Chang, Ki-Ho (National Typhoon Center, Korea Meteorological Administration) ;
  • Lee, Jong-Ho (National Typhoon Center, Korea Meteorological Administration)
  • Received : 2013.04.16
  • Accepted : 2013.06.04
  • Published : 2013.06.30

Abstract

This study examined a strong positive correlation between the North Atlantic Oscillation (NAO) index during June and the total tropical cyclone (TC) genesis frequency in the western North Pacific during July and August. To investigate a possible cause for this relationship, the mean difference between the highest positive NAO years and the lowest negative NAO years was analyzed by dividing into when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included and when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included. When the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were included, for the positive NAO years, the TCs mostly occurred in the northwestern region of tropical and subtropical western Pacific, and showed a pattern that migrate from the sea northeast of the Philippines, pass the East China Sea, and move toward the mid-latitudes of East Asia. In contrast, for the negative NAO years, the TCs mostly occurred in the southeastern region of tropical and subtropical western Pacific, and showed a pattern that migrate westward from the sea southeast of the Philippines, pass the South China Sea, and move toward the southern coast of China and Indochinese peninsula. These two different TC migration patterns affect the recurving location of TC, and for the positive NAO years, the recurving of TC was averagely found to take place in the further northeast. In addition, the migration patterns also affect the TC intensity, and the TCs of positive NAO years had stronger intensity than the TCs of negative NAO years as sufficient energy can be absorbed from the ocean while moving north in the mid-latitudes of East Asia. The TCs of negative NAO years showed weak intensity as they get weaken or disappear shortly while landing on the southern coast of China and the Indochinese peninsula. On the other hand, the above result of analysis is also similarly observed when the El Ni$\tilde{n}$o and La Ni$\tilde{n}$a years were not included.

이 연구는 지역특별기상센터-동경 태풍 센터에서 제공하는 태풍의 최적 경로 자료와 미국 국립 환경예측센터/미국 국립 대기연구센터의 재분석 자료를 이용하여 6월 북대서양 진동 지수와 7, 8월 총 북서태평양 태풍발생빈도 사이에 강한 양의 상관관계가 있음이 분석되었다. 이러한 관계의 가능한 원인을 알아보기 위해 엘니뇨, 라니냐 해를 포함한 경우와 포함 하지 않은 경우로 구분하여 가장 높은 양의 북대서양 진동 해와 가장 낮은 음의 북대서양 진동 해 사이의 평균 차를 분석하였다. 엘니뇨 해와 라니냐 해를 포함한 경우 양의 북대서양 진동 해에는 태풍이 열대 및 아열대 서태평양의 북서쪽에서 주로 발생하였으며, 필리핀 북동쪽 해상으로부터 동중국해를 지나 동아시아 중위도 지역으로 이동하는 패턴을 나타냈다. 반면, 음의 북대서양 진동 해에는 태풍이 열대 및 아열대 서태평양의 남동쪽에서 주로 발생하였으며, 필리핀 남동쪽 해상으로부터 남중국해를 지나 중국 남부해안 및 인도차이나 반도를 향해 서진하는 패턴을 나타냈다. 이러한 두 해의 태풍 이동 패턴은 태풍의 전향위치에도 영향을 주어 양의 북대서양 진동 해에 태풍 전향이 평균적으로 좀 더 북동쪽에 이루어지는 것으로 나타났다. 또한 두 해의 태풍 이동 패턴은 태풍의 강도에도 영향을 주어 동아시아 중위도에 북상하는 동안 바다로부터 충분한 에너지를 공급받을 수 있는 양의 북대서양 진동 해의 태풍의 강도가 음의 북대서양 진동 해의 태풍들보다 더 강했다. 음의 북대서양 진동 해에 태풍은 중국 남부해안 및 인도차이나 반도에 상륙하면서 강도가 약해지거나 바로 소멸되어 약한 강도를 나타내었다. 한편 위의 모든 분석의 결과는 엘니뇨, 리니냐 해를 포함하지 않은 경우에도 비슷하게 나타나 6월 북대서양 진동 지수가 7, 8월 총 북서태평양 태풍발생빈도를 예측하는데 좋은 예측인자가 될 수 있음을 알 수 있었다.

Keywords

References

  1. Chan, J.C.L., Shi, J.E., and Lam, C.M., 1998, Seasonal forecasting of tropical cyclone activity over the western North Pacific and the South China Sea. Weather and Forecasting, 13, 997-1004. https://doi.org/10.1175/1520-0434(1998)013<0997:SFOTCA>2.0.CO;2
  2. Chen, J.E., Shi, J.E., and Liu, K.S., 2001, Improvements in the seasonal forecasting of tropical cyclone activity over the western North Pacific, Weather and Forecasting, 16, 491-498. https://doi.org/10.1175/1520-0434(2001)016<0491:IITSFO>2.0.CO;2
  3. Choi, K.S., Kang, K.R., Kim, D.W., Hwang, H.S., and Lee, S.R., 2009, A study on the characteristics of tropical cyclone passage frequency over the western North Pacific using Empirical Orthogonal Function. Journal of Korean Earth Science Society, 30, 721-733.(In Korea) https://doi.org/10.5467/JKESS.2009.30.6.721
  4. Choi, K.S. and Kim, T.R., 2011a, Development of a diagnostic index on the approach of typhoon affecting Korean Peninsula. Journal of Korean Earth Science Society, 32, 347-359. (In Korea) https://doi.org/10.5467/JKESS.2011.32.4.347
  5. Choi, K.S. and Kim, T.R., 2011b, Regime shift of the early 1980s in the characteristics of the tropical cyclone affecting Korea. Journal of Korean Earth Science Society, 32, 453-460. https://doi.org/10.5467/JKESS.2011.32.5.453
  6. Choi, K.S. and Moon, I.J., 2012, Influence of the Western Pacific teleconnection pattern on western North Pacific tropical cyclone activity. Dynamics of Atmospheres and Oceans, 57, 1-16. https://doi.org/10.1016/j.dynatmoce.2012.04.002
  7. Choi, K.S., Wu, C.C., and Byun, H.R., 2012: Possible connection between summer tropical cyclone frequency and spring Arctic Oscillation over East Asia. Climate Dynamics, 38, 2613-2629. https://doi.org/10.1007/s00382-011-1088-z
  8. Choi, K.S., Wu C.C., and Cha, E.J., 2010, Change of tropical cyclone activity by Pacific-Japan teleconnection pattern in the western North Pacific. Journal of Geophysical Research, 115, D19114 https://doi.org/10.1029/2010JD013866
  9. Chu, P.S., 2002, Large-scale circulation features associated with decadal variations of tropical cyclone activity over the central North Pacific. Journal of Climate, 15, 2678-2689 https://doi.org/10.1175/1520-0442(2002)015<2678:LSCFAW>2.0.CO;2
  10. Elsner, J.B., Liu, K.B., and Kocher, B., 2000, Spatial Variations in Major U.S. Hurricane Activity: Statistics and a Physical Mechanism. Journal of Climate, 13, 2293-2305. https://doi.org/10.1175/1520-0442(2000)013<2293:SVIMUS>2.0.CO;2
  11. Gray, W.M., 1975, Tropical cyclone genesis. Dept. of Atmospheric Science Paper 234, Colorado State University, Fort Collins, CO, 121 pp
  12. Gray, W.M., 1984, Atlantic seasonal hurricane frequency. Part II: Forecasting its variability. Monthly Weather Review, 112, 1669-1683. https://doi.org/10.1175/1520-0493(1984)112<1669:ASHFPI>2.0.CO;2
  13. Gray, W.M., Landsea, C.W., Mielke Jr. P.W., and Berry, K.J., 1992, Predicting Atlantic seasonal hurricane activity 6-11 months in advance. Weather and Forecasting, 7, 440-455. https://doi.org/10.1175/1520-0434(1992)007<0440:PASHAM>2.0.CO;2
  14. Gray, W.M., Landsea, C.W., Mielke Jr. P.W., and Berry, K.J., 1993: Predicting Atlantic basin seasonal tropical cyclone activity by 1 August, Weather Forecasting, 8, 73-86. https://doi.org/10.1175/1520-0434(1993)008<0073:PABSTC>2.0.CO;2
  15. Gray, W.M., Landsea, C.W., Mielke Jr., P.W., and Berry, K.J., 1994, Predicting Atlantic basin seasonal tropical cyclone activity by 1 June, Weather and Forecasting, 9, 103-115. https://doi.org/10.1175/1520-0434(1994)009<0103:PABSTC>2.0.CO;2
  16. Ho, C.H., Kim, J.H., Kim, H.S., Sui, C.H., and Gong, D.Y., 2005, Possible influence of the Antarctic Oscillation on tropical cyclone activity in the western North Pacific. Journal of Geophysical Research, 110, D19104. https://doi.org/10.1029/2005JD005766
  17. Kalnay, E. and Coauthors, 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bulletin of American Meteorological Society, 77, 437-471. https://doi.org/10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
  18. Kistler, R. and Coauthors, 2001, The NCEP/NCAR 50-year reanalysis. Bulletin of American Meteorological Society, 82, 247-267. https://doi.org/10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
  19. Liu, K.B. and Fearn, M.L., 2000, Reconstruction of Prehistoric Landfall Frequencies of Catastrophic Hurricanes in Northwestern Florida from Lake Sediment Records. Quaternary Research, 54, 238-245. https://doi.org/10.1006/qres.2000.2166
  20. McCloskey, T.A. and Knowles, J.T., 2009, Migration of the tropical cyclone zone throughout the Holocene. Hurricanes and Climate Change. New York: Springer. ISBN 978-0-387-09409-0.
  21. Neumann, C.J., 1993, Global overview, In Global guide to tropical cyclone forecasting, edited by Holland, G.J., 1.1-1.56. Technical Document WMO/TC-No. 560, Report No. TCP-31. Geneva: World Meteorological Organization.
  22. Reynolds, R.W., Rayner, N.A., Smith, T.M., Stokes, D.C., and Wang, W., 2002, An improved in situ and satellite SST analysis for climate, Journal of Climate, 15, 1609-1625. https://doi.org/10.1175/1520-0442(2002)015<1609:AIISAS>2.0.CO;2
  23. Scott, D.B., Collins, E.S., Gayes, P.T., and Wright, E. 2003, Records of prehistoric hurricanes on the South Carolina coast based on micropaleontological and sedimentological evidence, with comparison to other Atlantic Coast records. Geological Society of America Bulletin, 115, 1027-1039. https://doi.org/10.1130/B25011.1
  24. Wang, B. and Chan, J.C.L., 2002, How strong ENSO affect tropical storm activity over the western North Pacific, Journal of Climate, 15, 1643-1658. https://doi.org/10.1175/1520-0442(2002)015<1643:HSEEAT>2.0.CO;2
  25. Wu, M.C., Chang, W.L., and Leung, W.M., 2004, Impacts of El Nino-Southern Oscillation events on tropical cyclone landfalling activity in the western North Pacific, Journal of Climate, 15, 1419-1431.