• Title/Summary/Keyword: the tropical western Pacific

Search Result 107, Processing Time 0.029 seconds

Diets of Bigeye and Yellowfin Tunas in the Western Tropical Pacific (서부 열대 태평양의 눈다랑어와 황다랑어의 먹이에 관한 연구)

  • KIM Jong-Bin;MOON Dae-Yeon;KWON Jung-No;KIM Tae-Ik;JO Hyun-Su
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.30 no.5
    • /
    • pp.719-729
    • /
    • 1997
  • Stomach contents of bigeye tuna, Thunnus obesus, and yellowfin tuna, Thunnus albacares, caught by longlining in the western tropical Pacific were analyzed to examine their foods and to compare their feeding behavior. The food species of both bigeye and yellowfin tunas were primarily fishes, crustaceans, and cephalopods. A total of 15 fish, 6 crustacean, and 1 cephalopod species were identified from their stomach contents, of which lantern fish (Myctophum sp.) was the most important food for both tuna species. No significant differences in species composition of food items between bigeye and yellowfin tunas were observed, indicating that in the same habitat the tunas have a similar feeding behavior. However, while they showed a remarkable similarity in diet composition, significant quantitative differences on the basis of IRI values were observed in several diet species, such as Myctophidae, Alepisauridae, Oplophoridae, Gammaridae, and Onychoteuthidae.

  • PDF

Influence of Large-Scale Environments on Tropical Cyclone Activity over the Western North Pacific: A Case Study for 2009 (대규모 순환장이 북서태평양 태풍활동에 끼치는 영향: 2009년의 예)

  • Choi, Woosuk;Ho, Chang-Hoi;Kim, Hyeong-Seog
    • Journal of Climate Change Research
    • /
    • v.1 no.2
    • /
    • pp.133-145
    • /
    • 2010
  • This study examined the characteristics of tropical cyclone(TC) activity over the western North Pacific(WNP) in 2009. Twenty-two TCs formed in 2009, which is slightly below normal(1979~2009 average: 25.8) and most of these occurred during the months of July to October. Most TCs in 2009 was formed over the northern Philippines and the eastern part of the WNP and they moved towards the South China Sea and the east of Japan, resulting in less TC affecting the East China Sea and Korea. The TC activity in 2009 is modulated by the large-scale circulations induced by the El $Ni{\tilde{n}}o$ and vigorous convection activity over the WNP. As the general characteristics of El $Ni{\tilde{n}}o$ year, the difference in sea surface temperature between the central Pacific and the eastern Pacific causes an anomalous westerly winds, expanding the WNP monsoon trough farther eastward. Accordingly, TC formation has relatively increased in the east part of the WNP. Active convection activities over the subtropical western Pacific excite a Rossby wave propagating from the South China Sea to mid-latitudes, resulting in an anomalous easterly steering flow in the South China, anomalous northwesterly over the East China Sea and Korea, and anomalous southwesterly over the east of Japan. Summing up, the TCs cannot enter the East China Sea and Korean region and instead they move towards the South China Sea or south-east of Japan. There were no effects of TCs in Korea in 2009. It is anticipated that this study which analyzed unusual TC activity and large-scale circulations in 2009 would help the predictability of TC effects to increase according to climate change in the East Asia.

Characteristics of the Extratropical Transition of Tropical Cyclones over the Western North Pacific using the Cyclone Phase Space (CPS) Diagram (북서태평양에서 저기압 위상 공간도법을 이용한 태풍의 온대저기압화 특성 분석)

  • Lee, Ji-Yun;Park, Jong-Suk;Kang, KiRyong;Chung, Kwan-Young
    • Atmosphere
    • /
    • v.18 no.3
    • /
    • pp.159-169
    • /
    • 2008
  • The characteristics of the typhoon's extratropical transition (ET) over the western North Pacific area were investigated using the cyclone phase space (CPS) diagram method suggested by Hart (2003). The data used in this study were the global data assimilation prediction system (GDAPS) and NCEP data set. The number of typhoons selected were 75 cases during 2002 to 2007, and the three parameters were analyzed : the motion relative thickness asymmetry of the storm (B), the upper thermal wind shear and the lower thermal wind shear. Comparing the best-track data provided by the Regional Specialized Meteorological Center /Tokyo, the time of the ET based on CPS was 2~6 hours earlier than the best-track data. And it was shown that the 400- km and 30 kt wind radius of storm for the CPS method were better agreement than the previous suggested radius 500- km.

Anthropogenic Fingerprint on Recent Changes in Typhoon Heavy Rainfall beyond Tipping-Point (최근 태풍 호우에서 보이는 인류세 지문의 변화: 임계점을 넘어서)

  • Hyungjun Kim;Nobuyuki Utsumi
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.87-87
    • /
    • 2023
  • The impact of climate change on typhoons is a major concern in East Asia, especially due to the destructive effects of heavy rainfall on society and the economy, as many megacities are located along coastal regions. Although observations suggest significant changes in typhoon heavy rainfall, the extent to which anthropogenic forcing contributes to these changes has yet to be determined. In this study, we demonstrate that anthropogenic global warming has a substantial impact on the observed changes in typhoon heavy rainfall in the western North Pacific region. Observation data indicates that, in general, typhoon heavy rainfall has increased (decreased) in coastal East Asia (tropical western North Pacific) during the latter half of the 20th century and beyond. This spatial distribution is similar to the "anthropogenic fingerprint" observed from a set of large ensemble climate simulations, which represents the difference between Earth systems with and without human-induced greenhouse gas emissions. This provides evidence to support the claim that the significant increase in the frequency of typhoon heavy rainfall along coastal East Asia cannot be solely explained by natural variability. In addition, our results indicate that the signal of the "anthropogenic fingerprint" has been increasing rapidly since the mid-1970s and departed from natural variability in the early 2000s, indicating that the regional summer climate has already crossed the tipping point.

  • PDF

The conspecificity of Pterosiphonia spinifera and P. arenosa (Rhodomelaceae, Ceramiales) inferred from morphological and molecular analyses

  • Bustamante, Danilo E.;Won, Boo Yeon;Cho, Tae Oh
    • ALGAE
    • /
    • v.31 no.2
    • /
    • pp.105-115
    • /
    • 2016
  • The genus Pterosiphonia includes twenty-one currently described species of red algae that occur in temperate to tropical regions of the Atlantic and Pacific Oceans. Pterosiphonia spinifera was originally described as Polysiphonia spinifera from Peru and later transferred to Pterosiphonia. Pterosiphonia spinifera has been reported from Peru as Pterosiphonia pennata, which was originally described from the Mediterranean Sea. Recently, Pterosiphonia arenosa was described based on specimens of P. pennata from Korea. We collected P. spinifera along the coast of Peru and P. arenosa near the type locality in Korea. We compared them with the isotype specimens of P. arenosa using both morphological and molecular data. Our morphological observations and our phylogenetic analysis of rbcL sequences demonstrate that P. spinifera and P. arenosa are conspecific and indicate that P. arenosa is a later synonym of P. spinifera. Our study confirms the wide occurrence of P. spinifera in the western and eastern Pacific Ocean.

Rainfall Characteristics of the Madden-Julian Oscillation from TRMM Precipitation Radar: Convective and Stratiform Rain (TRMM 자료로 분석한 매든-줄리안 진동의 대류성 및 층운형 강수 특징)

  • Son, Jun-Hyeok;Seo, Kyong-Hwan
    • Atmosphere
    • /
    • v.20 no.3
    • /
    • pp.333-341
    • /
    • 2010
  • The stratiform rain fraction is investigated in the tropical boreal winter Madden-Julian oscillation (MJO) and summer intraseasonal oscillation (ISO) using Tropical Rainfall Measuring Mission (TRMM) Precipitation Rader data for the 11-yr period from 1998 to 2008. Composite analysis shows that the MJO/ISO produces larger stratiform rain rate than convective rain rate for nearly all phases following the propagating MJO/ISO deep clouds, with the greatest stratiform rainfall amount when the MJO/ISO center is located over the central-eastern Indian Ocean and the western Pacific. The fraction of the intraseasonally filtered stratiform rainfall compared to total rainfall (i.e., convective plus stratiform rainfall) amounts to 53~56%, which is 13~16% larger than the stratiform rain fraction estimated for the same data on seasonal-to-annual time scales by Schumacher and Houze. This indicates that the MJO/ISO exhibits the organized rainfall process which is characterized by the shallow convection/heating at the incipient phase and the subsequent flare-up of strong deep convection, followed by the development of stratiform clouds at the upper troposphere.

Cruise Report on TAO Real-time Monitoring Buoy System in the Pacific Ocean in April 2010 (2010년 4월 TAO 해양관측부이 시스템에 관한 탐사보고)

  • Kim, Dong-Guk;Kim, Seon-Jeong;Lee, Ha-Woong
    • Ocean and Polar Research
    • /
    • v.33 no.4
    • /
    • pp.507-516
    • /
    • 2011
  • Tropical Atmosphere Ocean/Triangle Trans-Ocean Buoy Network (TAO/TRITON) Array is the series of buoys for the international ocean research project, which is mostly supported by National Ocean and Atmosphere Administration (NOAA) and Japan Agency for Marine-Earth Science and Technology (JAMSTEC). We can determine the effect of the equatorial and Pacific Ocean conditions on global climate change from buoy array measurement data. The TAO/TRITON array comprises around 70 measurement buoys from $10^{\circ}$ north to $10^{\circ}$ south in the tropics and between Galpagos and New Guinea. NOAA maintains ATLAS buoys in the central and eastern Pacific between $165^{\circ}E$ and $95^{\circ}W$, and JAMSTEC maintains the 12 buoys in the western Pacific along $137^{\circ}E$, $147^{\circ}E$, and $156^{\circ}E$. The KA-10-03 cruise excursion provided us with a good opportunity to obtain knowledge on oceanic buoy operation and maintenance. Further, we learned advanced techniques and know-how on buoy operation and maintenance. Once we are confident with our buoy management and maintenance techniques, both KORDI and NOAA technicians may be able to help each other when needed and share available resources.

Deceasing Trend of Summertime TC Frequency in Japan (여름철 일본에 영향을 주는 태풍빈도의 감소추세)

  • Choi, Jae-Won;Park, Ki-Jun;Lee, Kyungmi;Kim, Jeoung-Yun;Kim, Baek-Jo
    • Journal of Environmental Science International
    • /
    • v.24 no.7
    • /
    • pp.851-864
    • /
    • 2015
  • This study analyzed the climate regime shift using statistical change-point analysis on the time-series tropical cyclone (TC) frequency that affected Japan in July to September. The result showed that there was a significant change in 1995 and since then, it showed a trend of rapidly decreasing frequency. To determine the reason for this, differences between 1995 to 2012 (9512) period and 1978 to 1994 (7894) period were analayzed. First, regarding TC genesis, TCs during the 9512 period showed a characteristic of genesis from the southeast quadrant of the tropical and subtropical western North Pacific and TCs during the 7894 period showed their genesis from the northwest quadrant. Regarding a TC track, TCs in the 7894 period had a strong trend of moving from the far east sea of the Philippines via the East China Sea to the mid-latitude region in East Asia while TCs in the 9512 period showed a trend of moving from the Philippines toward the southern part of China westward. Thus, TC intensity in the 7894 period, which can absorb sufficient energy from the sea as they moved a long distance over the sea, was stronger than that of 9512. Large-scale environments were analyzed to determine the cause of such difference in TC activity occurred between two periods. During the 9512 period, anomalous cold and dry anticyclones were developed strongly in the East Asia continent. As a result, Korea and Japan were affected by the anomalous northerlies thereby preventing TCs in this period from moving toward the mid-latitude region in East Asia. Instead, anomalous easterlies (anomalous trade wind) were developed in the tropical western Pacific so that a high passage frequency from the Philippine to the south China region along the anomalous steering flows was revealed. The characteristics of the anomalous cold and dry anticyclone developed in the East Asia continent were also confirmed by the analysis of air temperature, relative humidity and sensible heat net flux showing that most regions in East Asia had negative values.

Seasonal Prediction of Tropical Cyclone Activity in Summer and Autumn over the Western North Pacific and Its Application to Influencing Tropical Cyclones to the Korean Peninsula (북서태평양 태풍의 여름과 가을철 예측시스템 개발과 한반도 영향 태풍 예측에 활용)

  • Choi, Woosuk;Ho, Chang-Hoi;Kang, KiRyong;Yun, Won-Tae
    • Atmosphere
    • /
    • v.24 no.4
    • /
    • pp.565-571
    • /
    • 2014
  • A long-range prediction system of tropical cyclone (TC) activity over the western North Pacific (WNP) has been operated in the National Typhoon Center of the Korea Meteorological Administration since 2012. The model forecasts the spatial distribution of TC tracks averaged over the period June~October. In this study, we separately developed TC prediction models for summer (June~August) and autumn (September~November) period based on the current operating system. To perform the three-month WNP TC activity prediction procedure readily, we modified the shell script calling in environmental variables automatically. The user can apply the model by changing these environmental variables of namelist parameter in consideration of their objective. The validations for the two seasons demonstrate the great performance of predictions showing high pattern correlations between hindcast and observed TC activity. In addition, we developed a post-processing script for deducing TC activity in the Korea emergency zone from final forecasting map and its skill is discussed.

A Comparison of Accuracy of the Ocean Thermal Environments Using the Daily Analysis Data of the KMA NEMO/NEMOVAR and the US Navy HYCOM/NCODA (기상청 전지구 해양순환예측시스템(NEMO/NEMOVAR)과 미해군 해양자료 동화시스템(HYCOM/NCODA)의 해양 일분석장 열적환경 정확도 비교)

  • Ko, Eun Byeol;Moon, Il-Ju;Jeong, Yeong Yun;Chang, Pil-Hun
    • Atmosphere
    • /
    • v.28 no.1
    • /
    • pp.99-112
    • /
    • 2018
  • In this study, the accuracy of ocean analysis data, which are produced from the Korea Meteorological Administration (KMA) Nucleus for European Modelling of the Ocean/Variational Data Assimilation (NEMO/NEMOVAR, hereafter NEMO) system and the HYbrid Coordinate Ocean Model/Navy Coupled Ocean Data Assimilation (HYCOM/NCODA, hereafter HYCOM) system, was evaluated using various oceanic observation data from March 2015 to February 2016. The evaluation was made for oceanic thermal environments in the tropical Pacific, the western North Pacific, and the Korean peninsula. NEMO generally outperformed HYCOM in the three regions. Particularly, in the tropical Pacific, the RMSEs (Root Mean Square Errors) of NEMO for both the sea surface temperature and vertical water temperature profile were about 50% smaller than those of HYCOM. In the western North Pacific, in which the observational data were not used for data assimilation, the RMSE of NEMO profiles up to 1000 m ($0.49^{\circ}C$) was much lower than that of HYCOM ($0.73^{\circ}C$). Around the Korean peninsula, the difference in RMSE between the two models was small (NEMO, $0.61^{\circ}C$; HYCOM, $0.72^{\circ}C$), in which their errors show relatively big in the winter and small in the summer. The differences reported here in the accuracy between NEMO and HYCOM for the thermal environments may be attributed to horizontal and vertical resolutions of the models, vertical coordinate and mixing scheme, data quality control system, data used for data assimilation, and atmosphere forcing. The present results can be used as a basic data to evaluate the accuracy of NEMO, before it becomes the operational model of the KMA providing real-time ocean analysis and prediction data.