• Title/Summary/Keyword: the spring-damper system

Search Result 269, Processing Time 0.026 seconds

Wave energy converter by using relative heave motion between buoy and inner dynamic system

  • Cho, I.H.;Kim, M.H.;Kweon, H.M.
    • Ocean Systems Engineering
    • /
    • v.2 no.4
    • /
    • pp.297-314
    • /
    • 2012
  • Power-take-off through inner dynamic system inside a floating buoy is suggested. The power take-off system is characterized by mass, stiffness, and damping and generates power through the relative heave motion between the buoy and inner mass (magnet or amateur). A systematic hydrodynamic theory is developed for the suggested WEC and the developed theory is illustrated by a case study. A vertical truncated cylinder is selected as a buoy and the optimal condition of the inner dynamic system for maximum PTO (power take off) through double resonance for the given wave condition is systematically investigated. Through the case study, it is seen that the maximum power can actually be obtained at the optimal spring and damper condition, as predicted by the developed WEC theory. However, the band-width of high performance region is not necessarily the greatest at the optimal (maximum-power-take-off) condition, so it has to be taken into consideration in the actual design of the WEC.

Damping and vibration analysis of viscoelastic curved microbeam reinforced with FG-CNTs resting on viscoelastic medium using strain gradient theory and DQM

  • Allahkarami, Farshid;Nikkhah-Bahrami, Mansour;Saryazdi, Maryam Ghassabzadeh
    • Steel and Composite Structures
    • /
    • v.25 no.2
    • /
    • pp.141-155
    • /
    • 2017
  • This paper presents an investigation into the magneto-thermo-mechanical vibration and damping of a viscoelastic functionally graded-carbon nanotubes (FG-CNTs)-reinforced curved microbeam based on Timoshenko beam and strain gradient theories. The structure is surrounded by a viscoelastic medium which is simulated with spring, damper and shear elements. The effective temperature-dependent material properties of the CNTs-reinforced composite beam are obtained using the extended rule of mixture. The structure is assumed to be subjected to a longitudinal magnetic field. The governing equations of motion are derived using Hamilton's principle and solved by employing differential quadrature method (DQM). The effect of various parameter like volume percent and distribution type of CNTs, temperature change, magnetic field, boundary conditions, material length scale parameter, central angle, viscoelastic medium and structural damping on the vibration and damping behaviors of the nanocomposite curved microbeam is examined. The results show that with increasing volume percent of CNTs and considering magnetic field, material length scale parameter and viscoelastic medium, the frequency of the system increases and critically damped situation occurs at higher values of damper constant. In addition, the structure with FGX distribution type of CNTs has the highest stiffness. It is also observed that increasing temperature, structural damping and central angle of curved microbeam decreases the frequency of the system.

Analysis and Design considerations of Energy Absorbing Steering System Using Orthogonal Arrays (직교배열표를 이용한 에너지흡수 조향계의 해석 및 설계)

  • 임재문;한선규;전원기;우덕현;박경진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.6
    • /
    • pp.144-155
    • /
    • 1999
  • An occupant analysis code SAFE (Safety Analysis For occupant crash Environment) is utilized to simulate and improve the crash performance of an energy absorbing steering system. The safety standard FMVSS 203 is simulated and used for design evaluations . Segments and contact elliposids are utilized to model the bod blocks and the components of the steering system with SAFE. Spring-damper elements and force-deflection characteristics are utilized to model the energy absorbing components such as the plate and the polyacetal molding. The plate absorbs the impact energy through tensile deformation . Whereas, the polyacetal molding absorbs the impact energy through compression. the body block test is carried out to validate tie simulation model, and real component tests are performed to extract the force-deflection curves . After the model is validated , the parameter study is carried out to evaluate the crash performance of the energy absorbing components. A performance measure is defined for the parameter study. Using the results of the parameter study and managing the orthogonal arrays, optimum design values of energy absorbing components are determined to minize the occupant injury.

  • PDF

A New Approach for the Analysis Solution of Dynamic Systems Containing Fractional Derivative

  • Hong Dong-Pyo;Kim Young-Moon;Wang Ji Zeng
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.5
    • /
    • pp.658-667
    • /
    • 2006
  • Fractional derivative models, which are used to describe the viscoelastic behavior of material, have received considerable attention. Thus it is necessary to put forward the analysis solutions of dynamic systems containing a fractional derivative. Although previously reported such kind of fractional calculus-based constitutive models, it only handles the particularity of rational number in part, has great limitation by reason of only handling with particular rational number field. Simultaneously, the former study has great unreliability by reason of using the complementary error function which can't ensure uniform real number. In this paper, a new approach is proposed for an analytical scheme for dynamic system of a spring-mass-damper system of single-degree of freedom under general forcing conditions, whose damping is described by a fractional derivative of the order $0<{\alpha}<1$ which can be both irrational number and rational number. The new approach combines the fractional Green's function and Laplace transform of fractional derivative. Analytical examples of dynamic system under general forcing conditions obtained by means of this approach verify the feasibility very well with much higher reliability and universality.

Signal Processing Algorithm for Controlling Dynamic Bandwidth of Fiber Optic Accelerometer (광섬유 가속도계 센서의 동적구간 조절을 위한 신호처리 알고리즘 개발)

  • Kim, Dae-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.4
    • /
    • pp.291-298
    • /
    • 2007
  • This paper presents a signal processing algorithm to control the dynamic bandwidth of a single-degree-of-freedom (SDF) dynamic sensor system. An accelerometer is a representative SDF sensor system. In this paper, a moire-fringe-based fiber optic accelerometer is newly used for the test of the algorithm. The accelerometer is composed of one mass, one damper and one spring as a SDF dynamic system. In order to increase the dynamic bandwidth of the accelerometer, it is needed to increase the spring constant or decrease the mass. However, there are mechanical difficulties of this adjustment. Therefore, the presented signal processing algorithm is very effective to overcome the difficulties because it is just adjustment in the signal processing software. In this paper, the novel fiber optic accelerometer is introduced shortly, and the algorithm is applied to the fiber optic accelerometer to control its natural frequency and damping ratio. Several simulations and experiments are carried out to prove the performance of the algorithm. As a result, it is shown that the presented signal processing algorithm is a good way to broaden the dynamic bandwidth of the fiber optic accelerometer.

A Study on Vibration Characteristics of Engine Mount System of a Medium Duty Truck at the Key On/Off (중형트럭 시동 시 엔진마운팅 시스템의 진동 특성 연구)

  • Kuk, Jong-Young;Lim, Jung-Hwan
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.16 no.4
    • /
    • pp.97-102
    • /
    • 2008
  • The vibration of a vehicle, which is caused by and transmitted from the engine, has significant effect on the ride comfort and the dynamic characteristics of the engine mount system have direct influence on the vibration and noise of the vehicle. This paper examines the body shake caused by the engine excitation force on engine key on/off of a medium truck by experiment and simulation. The analysis model consists of the engine, a body including the frame, front and rear suspensions and tires. The force element between the body and the suspension is modeled as a combination of a suspension spring and a damper. The engine shake obtained from the experiment was compared with the result of the computer simulation, and by using the verified computer model, parametric study of the body shake on engine key on/off is performed with changing the stiffness of an engine mount rubber, the engine mount angle, and the position of engine mounts.

Prediction of Radiated Noise From a Shaft-bearing-plate System Due to an Axial Excitation of Helical Gears (헬리컬 기어의 축방향 가진에 의한 축-베어링-플레이트계의 방사소음 예측)

  • Park, Chan-Il
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.199-203
    • /
    • 2004
  • In this paper, a simplified model is studied to predict analytically the radiated noise from the helical gear system due to an axial excitation of helical gear. The simplified model describes gear, shaft, bearing, and housing. To obtain the axial force of helical gear, mesh stiffness is calculated in the load deflection relation. The axial force is obtained from the solution of the equation of motion, using the mesh stiffness. It is used as a longitudinal excitation of the shaft, which in turn drives the gear housing through the bearing. In this study, the shaft is modeled as a rod, while the bearing is modeled as a parallel spring and damper only supporting longitudinal forces. The gear housing is modeled as a clamped circular plate with viscous damping. For the modeling of this system, transfer function from the shaft to the clamped plate are used, using a spectral method with four pole parameters. Out-of-plane displacement for the thin circular plate with viscous damping is derived and sound pressure radiated from the plate is also derived. Using the model, parameter studies are carried out.

  • PDF

Finite element analysis of vehicle-bridge interaction by an iterative method

  • Jo, Ji-Seong;Jung, Hyung-Jo;Kim, Hongjin
    • Structural Engineering and Mechanics
    • /
    • v.30 no.2
    • /
    • pp.165-176
    • /
    • 2008
  • In this paper, a new iterative method for solving vehicle-bridge interaction problems is proposed. Iterative methods have advantages over the non-iterative methods in that it is not necessary to update the system matrix for a given wheel location, and the method can be applied for a new type of car or bridge with few or no modifications. In the proposed method, the necessity of system matrices update is eliminated using the equivalent interaction force acting on the bridge, which is obtained iteratively. Ballast stiffness is included in the interaction forces and the geometric compatibility at the contact points are used as convergence criteria. The bridge is considered as an elastic Bernoulli-Euler beam with surface irregularity and ballast stiffness. The moving vehicle is modeled as a multi-axle mass-spring-damper system having many degrees of freedom depending on the number of axles. The pitching effect, which is the interaction effect between the rear and front wheels when a vehicle begins to enter or leave the bridge, is also considered in the formulation including extended ground boundaries having surface irregularity and ballast stiffness. The applicability of the proposed method is illustrated in the numerical studies.

Adaptive Control of the Atomic Force Microscope of Tapping Mode: Chaotic Behavior Analysis (진동방식의 원자간력 현미경으로 표면형상 측정시 발행하는 혼돈현상의 적응제어)

  • Kang, Dong-Hunn;Hong, Keum-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.1
    • /
    • pp.57-65
    • /
    • 2000
  • In this paper, a model reference adaptive control for the atomic force microscope (AFM) of tapping mode is investigated. The dynamics between the AFM system and al sample is mathematically modeled as a second order spring-mass-damper system with oscillatory inputs. The attractive and repulsive forces between the tip of the AFM system and the sample are derived using the Lennard-Jones potential energy. By non-dimensionalizing the displacement of the tip and the input frequency, the chaotic behavior near a resonance frequency is better depicted through the non-dimensionalized equations. Four nonlinear analysis techniques, a phase portrait, sensitive dependence on initial conditions, a power spectral density function, and a Pomcare map are investigated. Because the equations of motion derived in this paper involve unknown parameter values such as the damping effect of the air and the interaction constants between materials, the standard model reference adaptive control is adopted. Two control objectives, the prevention of chaos and the tracking of reference signal, are pursued. Simulation results are included.

  • PDF

Reduction of the Seismetic rRspocses by Using the Modified Hysteretic Bi-Linear Model of the Seismic Isolator (수정히스테리틱 Bi-Linear 면진베어린 모델을 사용한 지진응답감소)

  • Koo, G.H.;Lee, J.H.;Kim, J.B.;Lee, H.Y.;Yoo, B.
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.127-134
    • /
    • 1996
  • In general, seismic isolators which are made of laminated rubber and shim plate have characteristics of complex hysteretic behavior. When shear deformation of the seismic isolator is small, the isolator hassimple hysteretic almost bi-linear behabior. But on large shear deformation hardening effects may occur. This paper proposes a moldeling method of the seimic isolator with modified hysteretic bi-linear model which can consider the hardening effects. From the results of the seismic analyses of the isolated system it is shown that the responses are singificantly reduced compared with those of the non-isolated system. The modified hysteretic bi-linear model of the isolator gives larger ZPA(zero period acceleration) than those of the simple hysteretic bi-linear model and the equivalunt spring-damper model.