• Title/Summary/Keyword: the spring-damper system

Search Result 269, Processing Time 0.029 seconds

Heave Compensation System Design for Offshore Crane based on Input-Output Linearization

  • Le, Nhat-Binh;Kim, Byung-Gak;Kim, Young-Bok
    • Journal of Power System Engineering
    • /
    • v.21 no.2
    • /
    • pp.27-34
    • /
    • 2017
  • A heave motion of the offshore crane system with load is affected by unpredictable external factors. Therefore the offshore crane must satisfy rigorous requirements in terms of safety and efficiency. This paper intends to reduce the heave displacement of load position which is produced by rope extension and sea wave disturbance in vertical motion. In this system, the load position is compensated by the winch actuator control. The rope is modeled as a mass-damper-spring system, and a controller is designed by the input-output linearization method. The model system and the proposed control method are evaluated on the simulation results.

Load Position and Residual Vibration Control of an Offshore Crane System Based on Input-Output Linearization Theory

  • Le, Nhat-Binh;Lee, Kwon-Soon;Kim, Young-Bok
    • Journal of Navigation and Port Research
    • /
    • v.41 no.5
    • /
    • pp.337-344
    • /
    • 2017
  • In the offshore crane system, the requirements on the operating safety are extremely high due to many external factors. Rope extension is one of the factors producing vertical vibration of load. In this study, the load is carried by the motor-winch actuator control and the rope is modeled as a mass-damper-spring system. To control the load position and suppress the vertical vibration of the load, a control system based on input-output linearization method is proposed. By the simulation and experiment results with pilot crane model, the effectiveness of proposed control method is evaluated and verified.

Dynamic Modeling of Washing System with Elastic Motion (탄성 운동을 고려한 세탁기 시스템의 동력학 모델링)

  • 오혁진;이우식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.47-54
    • /
    • 2003
  • The rotating of rotatory unit with its structural unbalance mass and laundry is making the main vibration problem in a vertical axis washing machine. For reducing vibration problem total washing system hung on the case by its suspension system which is constitute of spring, damper and suspension bar and hydraulic balancer is attached at the upper rim of spin basket. In this paper, we make the dynamic model of washing system of its rigid body motions by 6 degree of freedoms. Hydraulic balancer is modeled by one degree of freedom like auto ball balancer. Elastic motions of washing system have found by method of analytic, experimental and FEM. And we consider first bending mode of each suspension bar and first circumferential mode of assy tub. So, the total washing system is modeled by 12 degree of freedoms. Equations of motion for total washing system have derived, and we perform the dynamic simulation tests.

  • PDF

Control of Mobile Manipulators for Power Assist Systems (파워 어시스트 시스템을 위한 이동 머니퓰레이터의 제어)

  • Lee, Hyeong-Gi;Seong, Yeong-Hwi;Jeong, Myeong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.74-80
    • /
    • 2000
  • In this paper, we present a control method of mobile power assist systems. Most of mobile power assist systems have a heavy base for preventing easy tumbling, so continual movement of the base during operations causes high energy consumption and gives the high risk of human injury. Furthermore, the slow dynamics of the base limits the frequency bandwidth of the whole system. Thus we propose a cooperation control method of the mobile base and manipulator, which removes the unnecessary movements of the base. In our scheme, the mobile base does not move until the center of gravity(C.G) of the system goes outside a safety region. When C.G. reaches the boundary of the safety region, the base starts moving to recover the manipulator's initial configuration. By varying the parameters of a human impedance controller, the operator is warned by a force feedback that C.G. is on the marginal safety region. Our scheme is implemented by assigning a nonlinear mass-damper-spring impedance to the tip of the manipulator. Our scheme is implemented by a nonlinear mass-spring impedance to the tip of the manipulator. The experimental results show the efficacy of the proposed control method.

  • PDF

IMPROVEMENT OF RIDE AND HANDLING CHARACTERISTICS USING MULTI-OBJECTIVE OPTIMIZATION TECHNIQUES

  • KIM W. Y.;KIM D. K.
    • International Journal of Automotive Technology
    • /
    • v.6 no.2
    • /
    • pp.141-148
    • /
    • 2005
  • In order to reduce the time and costs of improving the performance of vehicle suspensions, the techniques for optimizing damping and air spring characteristic were proposed. A full vehicle model for a bus is constructed with a car body, front and rear suspension linkages, air springs, dampers, tires, and a steering system. An air spring and a damper are modeled with nonlinear characteristics using experimental data and a curve fitting technique. The objective function for ride quality is WRMS (Weighted RMS) of the power spectral density of the vertical acceleration at the driver's seat, middle seat and rear seat. The objective function for handling performance is the RMS (Root Mean Squares) of the roll angle, roll rate, yaw rate, and lateral acceleration at the center of gravity of a body during a lane change. The design variables are determined by damping coefficients, damping exponents and curve fitting parameters of air spring characteristic curves. The Taguchi method is used in order to investigate sensitivity of design variables. Since ride and handling performances are mutually conflicting characteristics, the validity of the developed optimum design procedure is demonstrated by comparing the trends of ride and handling performance indices with respect to the ratio of weighting factors. The global criterion method is proposed to obtain the solution of multi-objective optimization problem.

Numerical Analysis of Offshore Installation Using a Floating Crane with Heave Compensator in Waves (Heave Compensator를 고려한 파랑 중 해상 크레인 설치작업 수치해석)

  • Nam, Bo-Woo;Hong, Sa-Young;Kim, Jong-Wook;Lee, Dong-Yeop
    • Journal of Ocean Engineering and Technology
    • /
    • v.26 no.1
    • /
    • pp.70-77
    • /
    • 2012
  • In this study, a numerical analysis of offshore installation using a floating crane with heave compensator is carried out in time domain. The motion analysis of crane vessels is based on floating body dynamics using convolution integral and the crane wire is treated as simple spring. The lifted structure is assumed as a rigid body with 3 degree-of-freedom translational motion. The heave compensator is numerically modelled by the generalized spring-damper system. Firstly, forced motion simulations of crane wire system are carried out to figure out the basic principle of heave compensator. The transfer function of crane wire system is obtained and effective wave period of heave compensator are found. Then, coupled analysis of crane vessel, crane wire, and lifted structure are performed in regular and irregular sea conditions. Two different crane vessels and two lifted structures (suction pile and manifold) are considered in this study. Through a series of numerical calculations, the effective zone of heave compensator is investigated with respect to wave period and crane wire length.

The Study on Position Control of Gantry Crane Spreader (갠트리 크레인 스프레더의 웨치제어에 관한 연구)

  • 이성섭;이형우;박찬훈;박경택;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.307-307
    • /
    • 2000
  • The swing motion of the spreader during and after movement causes an efficiency problem of position control in unmaned gantry crane. The objective of this research is to design implementable stabilizing controllers that minimize the swing motion of spreader in precise position control. The dynamic equations related to trolley, rope, and spreader are derived. For constitute a similar actual system, we introduced a conception of spring and damper in the connector. It is located between the trolley and link that is used in stead of rope. We derived dynamic equation by appliance that friction and external disturbance are occurred to the connector. We constituted of position servo system and velocity servo system for the control of position and velocity of the trolley and constituted of lag compensator system for the control of sway of the spreader. And we will show an effect of the proposed system in this research finally.

  • PDF

Approximate Response of a Non-linear Vibration Isolation System Using the Harmonic Balance Method (하모닉 밸런스법을 이용한 비선형 진동절연 시스템의 근사적 응답)

  • Lee, Gun-Myung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.17 no.6
    • /
    • pp.124-129
    • /
    • 2018
  • A non-linear vibration isolation system which is composed of a non-linear spring and a linear damper was proposed in past research. When the support of the isolation system is excited harmonically, the response component of the isolation system mass at the excitation frequency has been calculated approximately using the harmonic balance method. The response was approximated by a single mode, and the result was compared with a numerical result which is assumed as an accurate one. Next, the response was approximated by two modes, and the result was compared with the former one.

Dynamic Analysis of the Piezo-Actuator for a New Generation Lithography System (차세대 리소그라피 시스템을 위한 압전구동기의 동적 해석)

  • Park, Jae-Hak;Jung, Jong-Chul;Huh, Kun-Soo;Chung, Chung-Choo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.3
    • /
    • pp.472-477
    • /
    • 2003
  • A piezo-actuator is an important component for an E-beam lithography system. But it is very difficult to model its characteristics due to nonlinearities such as hysteresis and creep, to the input voltage. In this paper, one-axis micro stage with a piezo-actuator is modeled including the nonlinear properties. Hysteresis and creep are modeled as the first order differential equation and a time-dependent logarithmic function, respectively. The dynamic motion of the stage is also modeled as a mass-spring-damper system and the parameters are determined by utilizing the system identification technique. The simulation tool for a micro stage is constructed using the commercial software and its simulation results are compared with the experimental data.

Development of the Passive-Active Vibration Absorber Using Piezoelectric Actuators (수동-능동 압전형 진동흡수장치의 개발)

  • Kwak, Myung-Hoon;Heo, Seok;Kwak, Moon-K
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.308-312
    • /
    • 2001
  • This research is concerned with development of the passive-active vibration absorber using piezoelectric actuators. This active-passive isolation system consists of 4-pairs of PZT actuators bonded on accordion type of mounting bracket and a spring-damper located in center. Hence, the active system is connected in parallel to the passive system. In this paper, we discuss the dynamic characteristics of the addressed system. Based on the series of experiment, it is found that the proposed system can cope with the external disturbances. The controller design is currently under investigation.

  • PDF