• Title/Summary/Keyword: the spring-damper system

Search Result 269, Processing Time 0.026 seconds

Mechanical Characteristic Analysis of Coil Spring & Viscous Damper (Coil Spring & Viscous Damper System의 동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.19-26
    • /
    • 2007
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. Through this research nonlinear damping characteristics and the effective stiffness of coil spring and viscous damper system were evaluated.

Mechanical Characteristics Analysis of Coil Spring & Viscous Damper System (Coil Spring & Viscose Damper System의 동적거동특성분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.471-478
    • /
    • 2006
  • This paper presents the results of experimental studies of the mechanical characteristics of the Coil Spring and Viscous Damper system. The Coil Spring and Viscous Damper systems were selected for the isolation of Emergency Diesel Generator (EDG) which is located in Nuclear Power Plant (NPP). The Coil Spring and Viscous Damper systems were developed for, the operating vibration isolation and seismic isolation for scaled Model EDG System. The damping properties of the viscous damper changes as the variation of velocity. As a results, nonlinear damping characteristics of viscous damper system were evaluated.

  • PDF

Three Axis Disk Spring Damper Containing Wedge System (웻지를 이용한 3축 방향 디스크 스프링 댐퍼에 관한 연구)

  • Choi, Myung-Jin;Jeong, Ji-Won
    • Journal of the Korean Institute of Gas
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2009
  • This study pertains to damping device to reduce vibrational responses and shocks in multi-directions. To enhance the capability of disk spring damper which works for vertical vibration and shock, a multi-directional damper is proposed, which contains wedge system as well as disk spring stack. Wedge system converts horizontal load into vertical load. A mathematical model is proposed and investigated for the nonlinear behaviors of the disc spring damper containing wedge system. The results accord with the experimental results. Equivalent viscous damping in vertical and horizontal directions are found based upon energy dissipated.

  • PDF

On the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems

  • Chen, Der-Wei
    • Structural Engineering and Mechanics
    • /
    • v.16 no.3
    • /
    • pp.341-360
    • /
    • 2003
  • The goal of this paper is to determine the eigenvalues of a uniform rectangular plate carrying any number of spring-damper-mass systems using an analytical-and-numerical-combined method (ANCM). To this end, a technique was presented to replace each "spring-damper-mass" system by a massless equivalent "spring-damper" system with the specified effective spring constant and effective damping coefficient. Then, the mode superposition approach was used to transform the partial differential equation of motion into the matrix equation, and the eigenvalues of the complete system were determined from the associated characteristic equation. To verify the reliability of the presented theory, all numerical results obtained from the ANCM were compared with those obtained from the conventional finite element method (FEM) and good agreement was achieved. Since the order of the property matrices for the equation of motion obtained from the ANCM is much lower than that obtained from the FEM, the CPU time required by the ANCM is much less than that by the FEM.

A Real-Time Collision-Free Trajectory Planning and Control for a Car-Like Mobile Robot (이동 로봇을 위한 실시간 충돌 회피 궤적 계획과 제어)

  • 이수영;이석한;홍예선
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.5 no.1
    • /
    • pp.105-114
    • /
    • 1999
  • By using the conceptual impedance and the elasticity of a serial chain of spring-damper system, a real-time collision-free trajectory generation algorithm is proposed. The reference points on a trajectory connected by the spring-damper system have a mechanism for self-Position adjustment to avoid a collision by the impedance, and the local adjustment of each reference point is propagated through the elasticity to a real robot at the end of the spring-damper system. As a result, the overall trajectory consisting of the reference points becomes free of collision with environmental obstacles and efficient having the shortest distance as possible. In this process, the reference points connected by the spring-damper system take role of virtual robot as global guidance for a real robot, and a cooperative optimization is carried out by the system of virtual robots. A control algorithm is proposed to implement the impedance for a car-like mobile robot.

  • PDF

A PERFORMANCE ASSESSMENT OF A BASE ISOLATION SYSTEM FOR AN EMERGENCY DIESEL GENERATOR IN A NUCLEAR POWER PLANT

  • Choun, Young-Sun;Kim, Min-Kyu
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.285-298
    • /
    • 2008
  • This study evaluates the performance of a coil spring-viscous damper system for the vibration and seismic isolation of an Emergency Diesel Generator (EDG) by measuring its operational vibration and seismic responses. The vibration performance of a coil spring-viscous damper system was evaluated by the vibration measurements for an identical EDG set with different base systems - one with an anchor bolt system and the other with a coil spring-viscous damper system. The seismic performance of the coil spring-viscous damper system was evaluated by seismic tests with a scaled model of a base-isolated EDG on a shaking table. The effects of EDG base isolation on the fragility curve and core damage frequency in a nuclear power plant were also investigated through a case study.

Design of Dynamic Characteristics Adjustable Integrated Air Spring-Damper Mechanism for Dual Shock Generation System (동특성 가변형 에어스프링-댐퍼 일체 구조의 이중 충격 발생장치 설계)

  • Yeo, Sung Min;Shul, Chang Won;Kang, Min Sig
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.3
    • /
    • pp.331-341
    • /
    • 2018
  • This study proposes an integrated serial spring-damper mechanism as a dual pulse generation system. Compared to the traditional dual pulse generation system, which used multiple springs and a damper to generate a dual pulse critical for impact testing of naval equipments, currently used separated serial spring-damper mechanism is comprised of two components: an air spring, and a damper. The proposed mechanism combines the two components into one integrated system with a unique design that lets simply changing the volume and the pressure of the air tank, and the length of the annular pipe adjust the stiffness and damping constants for testing, eliminating the need to have multiple sets of air springs and dampers. Simulations using MatLab and Simulink were conducted to verify the feasibility of this design. The results show the potential of an integrated serial spring-damper mechanism as a more convenient and flexible mechanism for dual pulse generation system.

Seismic response of spring-damper-rolling systems with concave friction distribution

  • Wei, Biao;Wang, Peng;He, Xuhui;Jiang, Lizhong
    • Earthquakes and Structures
    • /
    • v.11 no.1
    • /
    • pp.25-43
    • /
    • 2016
  • The uneven distribution of rolling friction coefficient may lead to great uncertainty in the structural seismic isolation performance. This paper attempts to improve the isolation performance of a spring-damper-rolling isolation system by artificially making the uneven friction distribution to be concave. The rolling friction coefficient gradually increases when the isolator rolls away from the original position during an earthquake. After the spring-damper-rolling isolation system under different ground motions was calculated by a numerical analysis method, the system obtained more regular results than that of random uneven friction distributions. Results shows that the concave friction distribution can not only dissipate the earthquake energy, but also change the structural natural period. These functions improve the seismic isolation efficiency of the spring-damper-rolling isolation system in comparison with the random uneven distribution of rolling friction coefficient, and always lead to a relatively acceptable isolation state even if the actual earthquake significantly differs from the design earthquake.

Equivalent Impedance Modelling and Frequency Characteristic Analysis of Linear Oscillatory Actuator System Considering Mass/spring System (질량/스프링 계를 고려한 리니어 왕복 액추에이터 시스템의 등가 임피던스 모델링과 주파수 특성 해석)

  • Jeong, Sang-Seop;Jang, Seok-Myeong
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.370-378
    • /
    • 2002
  • As resent trends in structural construction have been to build taller and larger structures than any time in the past, they have had high flexibility and low damping that can cause large vibration response under severe environmental loading such as earthquakes, winds, and mechanical excitations. The damper with mass and spring is one approach to safeguarding the structure against excessive vibrations. In this paper, the lumped electrical circuit approach of mass/spring system is used to model the mechanical aspects according to the frequency. Therefore, the mass/spring system can be dealt with here and linked with the equivalent circuit of electric linear oscillatory actuator(LOA). Analysis models are two types of vibration control system, active mass damper(AMD) and hybrid mass damper(HMD). AMD consists of the moving coil LOA with mass only The LOA of HMD with mass and spring is composed of the fixed coil and the movable permanent magnet(PM) field part. The PM field part composed magnet modules and iron coke, is the damper marts itself. We Present the motional resistance and reactance of mass/spring system and the system impedance of AMD and HMD according to the frequency.

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • v.15 no.3
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.