• Title/Summary/Keyword: the south and west sea of Korea

검색결과 364건 처리시간 0.028초

대한민국 서해, 남해 수중 채널 환경에서 OFDM 파라미터에 따른 실해역 성능 분석 (Performance analysis of real sea area according to OFDM parameters in the underwater channel environment of the West Sea and South Sea of Korea)

  • 정태건;임현택;임태호
    • 한국정보통신학회논문지
    • /
    • 제24권8호
    • /
    • pp.1086-1094
    • /
    • 2020
  • 본 논문은 대한민국 서해와 남해에서의 거리에 따른 성능분석을 위해 실해역 측정을 했다. 서해와 남해 선박의 거리와 전송율 관점에서 측정된 실해역 데이터를 기반으로 데이터 반복 전송 횟수와 파일럿 심볼 배치 간격 파라미터를 조절하여 서해와 남해 성능 비교를 통해 수중OFDM 시스템을 성능을 분석하였다. 결론으로는 전송율과 거리에서 남해의 성능을 비교했을 때 파라미터가 같은 조건에서 남해 5km, 서해 1km 거리에서 BER성능이 남해가 성능이 비슷하였으며, 남해 10km,서해 3km에서 파일럿 심볼의 배치간격을 (𝚫f, 𝚫t) = (6, 3)의 심볼과 PRB가 반복되는 (Rf, Rt) = (2, 1)에서 남해는 1078.92bit/s 서해는 1384.57bit/s으로 전송율관점에서도 남해에서 장거리에서 높은 데이터를 보낼 수 있는걸 확인하였다

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo
    • Journal of information and communication convergence engineering
    • /
    • 제2권1호
    • /
    • pp.58-60
    • /
    • 2004
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20∼30cm and 18∼24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15∼20cm and 10∼15cm, respectively. High variations in the West Sea were results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea were due to two branch currents (Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current (TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/see) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/see) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/see) in the northeastern area of Tushima island with TWC, respectively.

Sea level observations in the Korean seas by remote sensing

  • Yoon, Hong-Joo;Byon, Hye-Kyong
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2003년도 Proceedings of ACRS 2003 ISRS
    • /
    • pp.879-881
    • /
    • 2003
  • Sea level variations and sea surface circulations in the Korean seas were observed by Topex/Poseidon altimeter data from 1993 through 1997. In sea level variations, the West and South Sea showed relatively high variations with comparison to the East Sea. Then, the northern and southern area in the West Sea showed the range of 20${\sim}$30cm and 18${\sim}$24cm, and the northern west of Jeju island and the southern west of Tsushima island in the South Sea showed the range of 15${\sim}$20cm and 10${\sim}$15cm, respectively. High variations in the West Sea was results to the inflow in sea surface of Yellow Sea Warm Current (YSWC) and bottom topography. Sea level variations in the South Sea was due to two branch currents(Jeju Warm Current and East Korea Warm Current) originated from Kuroshio Current (KC). In sea surface circulations, there existed remarkably three eddies circulations in the East Sea that are mainly connected with North Korea Cold Current (NKCC), East Korea Warm Current (EKWC) and Tushima Warm Current(TWC). Their eddies are caused basically to the influence of currents in sea surface circulations; Cyclone (0.03 cm/sec) in the Wonsan bay off shore with NKCC, and anticyclone (0.06 cm/sec) in the southwestern area of Ulleung island with EKWC, and cyclone (0.01 cm/sec) in the northeastern area of Tushima island with TWC, respectively.

  • PDF

국내 대표 해양·수산 과학논문 분석을 통한 우리나라 주변 바다 이름표기에 대한 제언 (Nomenclature of the Seas Around the Korean Peninsula Derived From Analyses of Papers in Two Representative Korean Ocean and Fisheries Science Journals: Present Status and Future)

  • 변도성;최병주
    • 한국해양학회지:바다
    • /
    • 제23권3호
    • /
    • pp.125-151
    • /
    • 2018
  • 지난 20년간(1998-2017년) 한국해양학회지(바다)와 한국수산과학회지에 실린 한글 논문 중 우리나라 주변 바다 이름을 지도에 표기한 논문들을 대상으로 그 표기 방법을 살펴보았다. 지도에 표기된 바다 명칭들의 형태는 크게 세 가지 - 'East Sea(동해)와 Yellow Sea(황해)', 'East Sea(동해), Yellow Sea(황해), South Sea(남해)', 'East Sea(동해), West Sea(서해), South Sea(남해)' - 가 있다. 'East Sea'는 모든 논문에서 'East Sea'로 표기된 반면, 'Yellow Sea'는 'West Sea'와 혼용해서 사용되고 있었다. 'Korea Strait(대한해협)' 대신 'South Sea'의 사용 빈도도 높았다. 이 결과는 연구자들이 해안선으로부터 가까운 연안해역을 우리나라를 기준으로 지리적 방위에 근간하여 부를 때 사용하는 바다 명칭과 주변해에 대한 국제적인 바다 명칭을 혼용하여 사용하고 있음을 보여 준다. 따라서 우리나라 해양 수산 연구자들이 바다 이름표기에 관한 기준을 세우고 일관성 있게 표기하는 것이 시급하다. 이와 관련하여 이 연구에서는 연구논문 작성 시에 주변해와 우리나라 연안해역에 대한 바다 명칭을 서로 구분하여 사용할 것을 제안하였다. 즉, 주변해는 국제적으로 통용되고 있는 'East Sea(동해)', 'Yellow Sea(황해)', 'Korea Strait(대한해협)', 'East China Sea(동중국해)'로 사용하고, 이들 주변 바다에 포함되어 있는 연안해역은 우리나라를 기준으로 상대적 방위에 근거한 'Coastal Sea off the East Coast of Korea(한국 동쪽 연안 바다)', 'Coastal Sea off the West Coast of Korea(한국 서쪽 연안 바다)', 'Coastal Sea off the South Coast of Korea(한국 남쪽 연안 바다)' 등으로 표현할 수 있다. 다른 표현으로는 'East Korea Coastal Zone', 'South Coastal Zone of Korea', 'West Korea Coastal Zone'으로도 표현할 수 있다. 작은 규모의 특정 해역의 경우 해양지명(해상지명과 해저지명)을 사용하여 연구해역을 표기할 수 있다.

북방한계선(北方限界線)과 서해5도(西海5島) 주변수역(周邊水域)의 해양법문제(海洋法問題) (Northern Limit Line and its Problems of the Law of the Sea in the Sea Area around Five South Korean Islands of the West Sea)

  • 최종화;김영규
    • 수산해양교육연구
    • /
    • 제16권1호
    • /
    • pp.110-123
    • /
    • 2004
  • Five Islands in the West Sea of Korea (Baekryeong-do, Daecheong-do, Socheong-do, Yeonpyeong-do, and Woo-do) are located very close to the North Korea's coast and all of them are under the jurisdiction of South Korea. The North and South Korean naval vessels clashed twice in the West Sea of Korea on June 15, 1999 and on June 29, 2002. These incidents were resulted from conflicts over the validity of the Northern Limit Line(NLL) and the appropriate maritime boundary between the two Koreas. From the viewpoint of South Korea, the North Limit Line is a lawful Maritime Military Demarcation Line under the Korean Military Armistice Agreement and it must be maintained as a maritime boundary between two Koreas until being substituted by a peace treaty. In conclusion, the maritime boundary between two Koreas cannot be settled easily by the principles of the International Law of the Sea at present.

음향을 이용한 춘계와 추계에 우리나라 동서남해의 수산자원의 공간적인 분포 및 군집특성 조사 (Study on the spatial distribution and aggregation characteristics of fisheries resources in the East Sea, West Sea and South Sea of the South Korea in spring and autumn using a hydroacoustic method)

  • 박준성;황강석;박준수;강명희
    • 수산해양기술연구
    • /
    • 제54권2호
    • /
    • pp.146-156
    • /
    • 2018
  • Acoustic surveys were conducted in the seas surround the South Korea (South Sea A, South Sea B (waters around the Jeju Island), West Sea and East Sea) in spring and autumn in 2016. First, the vertical and horizontal distributions of fisheries resources animals were examined. In most cases vertical acoustic biomass was high in surface water and mid-water layers other than South Sea A in autumn and West Sea. The highest vertical acoustic biomass showed at the depth of 70-80 m in the South Sea A in spring ($274.4m^2/nmi^2$) and the lowest one was 10-20 m in the West Sea in autumn ($0.4m^2/nmi^2$). With regard to the horizontal distributions of fisheries resources animals, in the South Sea A, the acoustic biomass was high in eastern and central part of the South Sea and the northeast of Jeju Island ($505.4-4099.1m^2/nmi^2$) in spring while it was high in eastern South Sea and the coastal water of Yeosu in autumn ($1046.9-2958.3m^2/nmi^2$). In the South Sea B, the acoustic biomass was occurred high in the southern and western seas of Jeju Island in spring ($201.0-1444.9m^2/nmi^2$) and in the southern of Jeju Island in autumn ($203.7-1440.9m^2/nmi^2$). On the other hand, the West Sea showed very low acoustic biomass in spring (average NASC of $1.1m^2/nmi^2$), yet high acoustic biomass in the vicinity of 37 N in autumn ($562.6-3764.2m^2/nmi^2$). The East Sea had high acoustic biomass in the coastal seas of Busan, Ulsan and Pohang in spring ($258.7{\sim}976.4m^2/nmi^2$) and of Goseong, Gangneung, Donghae, Pohang and Busan in autumn ($267.3-1196.3m^2/nmi^2$). During survey periods, fish schools were observed only in the South Sea A and the East Sea in spring and the West Sea in autumn. Fish schools in the South Sea A in spring were small size ($333.2{\pm}763.2m^2$) but had a strong $S_V$ ($-49.5{\pm}5.3dB$). In the East Sea, fish schools in spring had low $S_V$ ($-60.5{\pm}14.5dB$) yet had large sizes ($537.9{\pm}1111.5m^2$) and were distributed in the deep water depth ($83.5{\pm}33.5m$). Fish schools in the West Sea in autumn had strong $S_V$ ($-49.6{\pm}7.4dB$) and large sizes ($507.1{\pm}941.8m^2$). It was the first time for three seas surrounded South Korea to be conducted by acoustic surveys to understand the distribution and aggregation characteristics of fisheries resources animals. The results of this study would be beneficially used for planning a future survey combined acoustic method and mid-water trawling, particularly deciding a survey location, a time period, and a targeting water depth.

여자만 서수도 해역의 조류 및 조석평균류 특성 (Characteristics of tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea)

  • 추효상
    • 수산해양기술연구
    • /
    • 제55권3호
    • /
    • pp.252-263
    • /
    • 2019
  • In order to understand the tidal current and mean flow at the west channel of Yeoja Bay in the South Sea of Korea, numerical model experiments and vorticity analysis were carried out. The currents flow north at flood and south at ebb respectively and have the reversing form in the west channel. Topographical eddies are found in the surroundings of Dunbyong Island in the east of the channel. The flood currents flow from the waters near Naro Islands through the west channel and the coastal waters near Geumo Islands through the east channel. The ebb currents from the Yeoja Bay flow out along the west and the east channels separately. The south of Nang Island have weak flows because the island is located in the rear of main tidal stream. Currents are converged at ebb and diverged at flood in the northwest of Jeokgum Island. Tidal current ellipses show reversing form in the west channel but a kind of rotational form in the east channel. As the results of tide induced mean flows, cyclonic and anticyclonic topographical eddies at the northern tip but eddies with opposite spin at the southern tip are found in the west channel of Yeoja Bay. The topographical eddies around the islands and narrow channels are created from the vorticity formed at the land shore by the friction between tidal currents and the west channel.

Microsatellite을 이용한 서해, 남해 및 동해 멸치 계군 분석 (The Population Genetic Structure of the Japanese Anchovy (Engraulis japonicus Temminck & Schlegel) in the West, South and East Seas of Korea Based on Microsatellite DNA Analysis)

  • 오택윤;김주일;서영일;조은섭
    • 생명과학회지
    • /
    • 제19권2호
    • /
    • pp.174-178
    • /
    • 2009
  • 본 연구는 2006년 8월경에 어획된 서해, 남해 및 동해 멸치집단을 분석하기 위하여 6종류의 microsatellite로 하였다. 서해멸치의 경우, 샘플수 72마리에 대한 allele 범위가 19-41로 평균 28.5를 보였다. 특히 EJ9 locus에서 평균보다 약 1.4배 많은 41를 나타내었다. 남해멸치의 평균 allele는 24.5로 서해보다는 적었고, EJ2, EJ9, EJ27.1 loci는 평균보다 높은 29-37의 범위를 보였다. 동해멸치는 평균 allele가 25.0으로 EJ35를 제외하면 대부분의 loci에서 평균 이상을 보였다. 그러나 서해, 남해 및 동해멸치의 allele 빈도율은 대부분 0.24 이하로 나타났다. 또한 Hobs보다 Hexp에서 0.5 정도 높은 값을 보였으나 유의성은 없었다(p>0.05). 유전적 다양성도 0.9 이상으로 매우 높은 값을 보였다. 6종류의 microsatellite에 대한 지역간의 유전적 차이 및 거리는 0.258과 0.019로 유의적으로 차이는 없었다 (p>0.05). 따라서 서해, 남해 및 동해 멸치계군은 유전적으로 동일한 집단을 형성하고 있는 것으로 판단된다.

기후변화를 고려한 연안지역 재해예방기법 적용방안 연구 (A Study on the Application of Coastal Disaster Prevention Considering Climate Change)

  • 이성현;김보람;임준혁;오국열;심우배
    • 한국기후변화학회지
    • /
    • 제9권4호
    • /
    • pp.369-376
    • /
    • 2018
  • Korea is surrounded by the West Sea, the South Sea, and the East Sea. There are various points at which large and small rivers flow into the sea, and areas where these rivers meet the coast are vulnerable to disasters. Thus, it is necessary to study disaster prevention techniques based on coastal characteristics and the pattern of disasters. In this study, we analyzed the risk factors of disaster districts analyzed in comprehensive plans for the reduction of damage to coastal cities from storms and floods. As a result of standardization, four factors (tide level, intensive rainfall & typhoon, wave, and tsunami) were identified. Intensive rainfall & typhoon occurred along the West Sea, the South Sea, and the East Sea coast. Factors that should be considered to influence disasters are tide level for the West Sea, tsunami and tide level for the South Sea, and wave in the East Sea. In addition, disaster prevention techniques to address these factors are presented, focusing on domestic and overseas cases.