DOI QR코드

DOI QR Code

The Population Genetic Structure of the Japanese Anchovy (Engraulis japonicus Temminck & Schlegel) in the West, South and East Seas of Korea Based on Microsatellite DNA Analysis

Microsatellite을 이용한 서해, 남해 및 동해 멸치 계군 분석

  • Oh, Taeg-Yun (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Kim, Joo-Il (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Seo, Young-Il (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute) ;
  • Cho, Eun-Seob (South Sea Fisheries Research Institute, National Fisheries Research and Development Institute)
  • 오택윤 (국립수산과학원 남해수산연구소) ;
  • 김주일 (국립수산과학원 남해수산연구소) ;
  • 서영일 (국립수산과학원 남해수산연구소) ;
  • 조은섭 (국립수산과학원 남해수산연구소)
  • Published : 2009.02.28

Abstract

The characteristics of the population genetic structure of the Japanese anchovy (Engraulis japonicus Temminck & Schlegel) were collected from the West, South and East Seas of Korea in August, 2006 and were compared using six microsatellite DNA loci. In the West Sea population, the range of allele number against 72 individuals was from 19 to 41, the average allele number was 28.5. In EJ9, the allele number had the highest value of 41, this was 1.4 times higher than the average number of allele. The average allele number of the South Sea population was 24.5 that was less than that of West Sea population. In EJ2, EJ9 and EJ27.1 loci, the allele number was higher than average allele number in the South Sea population. In the East Sea population, the average allele number was estimated at 25.0 that most of loci except for EJ35 were higher than average allele number. Allele frequency in the West, South and East Sea populations was below 0.24. The value of observed heterozosity for six loci was approximately 0.5 higher than that of expected heterozosity (p>0.05), but three populations similar values to these heterozosity. Although the genetic diversity was higher value of above 0.9, three populations had a similar value. Genetic differentiation and distance combined estimate of the six loci were 0.258 and 0.019 (p>0.05), respectively, but showed no significant distance between three populations. These results suggested that it is responsible for no differentiated gene pool between three populations.

본 연구는 2006년 8월경에 어획된 서해, 남해 및 동해 멸치집단을 분석하기 위하여 6종류의 microsatellite로 하였다. 서해멸치의 경우, 샘플수 72마리에 대한 allele 범위가 19-41로 평균 28.5를 보였다. 특히 EJ9 locus에서 평균보다 약 1.4배 많은 41를 나타내었다. 남해멸치의 평균 allele는 24.5로 서해보다는 적었고, EJ2, EJ9, EJ27.1 loci는 평균보다 높은 29-37의 범위를 보였다. 동해멸치는 평균 allele가 25.0으로 EJ35를 제외하면 대부분의 loci에서 평균 이상을 보였다. 그러나 서해, 남해 및 동해멸치의 allele 빈도율은 대부분 0.24 이하로 나타났다. 또한 Hobs보다 Hexp에서 0.5 정도 높은 값을 보였으나 유의성은 없었다(p>0.05). 유전적 다양성도 0.9 이상으로 매우 높은 값을 보였다. 6종류의 microsatellite에 대한 지역간의 유전적 차이 및 거리는 0.258과 0.019로 유의적으로 차이는 없었다 (p>0.05). 따라서 서해, 남해 및 동해 멸치계군은 유전적으로 동일한 집단을 형성하고 있는 것으로 판단된다.

Keywords

References

  1. Asahida, T., T. Kobayashi, K. Saitoh, and I. Nakayama. 1996. Tissue preservation and total DNA extraction from fish stored at ambient temperature using buffers containing high concentration of urea. Fish Sci. 62, 727-730 https://doi.org/10.2331/suisan.62.727
  2. Bembo, D. G., G. R. Carvalho, M. Snow, N. Cingolani, and T. J. Pitcher. 1995. Stock discrimination among European anchovies, Engraulis encrasicolus, by means of PCR-amplified mitochondrial DNA analysis. Fish Bull. 75, 31-40
  3. Bembo, D. G., G. R. Carvalho, N. Cingolani, and T. J. Pitcher. 1996b. Electrophoretic analysis of stock structure in northern Mediterranean anchovies, Engraulis encrasicolus. ICES J. Mar. Sci. 75, 115-128
  4. Bembo, D. G., G. R. Carvalho, N. Cingolani, E. Arneri, g. Giannetti, and T. J. Pitcher. 1996a. Allozymic and morphometric evidence for two stocks of the European anchovy Engraulis encrasicolus in Adriatic waters. Mar. Biol. 75, 529-538 https://doi.org/10.1080/11250009809386794
  5. Borsa, P. 2002. Allozyme, mitochondrial-DNA, and mor phometric variability indicate cryptic species of anchovy (Engraulis encrasicolus). Biol. J. Linn. Soc. 75, 261-270
  6. Borsa, P., A. Collet, and J. D. Durand. 2004. Nuclear-DNA markers confirm the presence of two anchovy species in the Mediterranean. C.R. Biologies 327, 1113-1123 https://doi.org/10.1016/j.crvi.2004.09.003
  7. Chiu, T. S., Y. J. Lee, S. W. Huang, and H. T. Yu. 2002. Polymorphic microsatellite markers for stock identification in Japanese anchovy (Engraulis japonica). Mol. Ecol. Notes 2, 49-50 https://doi.org/10.1046/j.1471-8286.2002.00142.x
  8. Cho, E. S. and J. I. Kim. 2006. Mitochondrial DNA polymorphism of the Japanese anchovy (Engraulis japonicus Temminck & Schlegel) collected from the Korean offshore and inshore waters. J. Life Sci. 16, 812-827
  9. Excoffier, L., P. E. Smouse, and J. M. Quattro. 1992. Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131, 479-491
  10. Kim, J. Y., E. S. Cho, and W. J. Kim. 2004. Population genetic structure of Japanese anchovy (Engraulis japonicus) in Korean waters based on mitochondrial 12S ribosomal RNA gene sequence. J. Life Sci. 14, 938-950
  11. Landi, M., F. Garoia, C. Piccinetti, and F. Tinti. 2005. Isolation of polymorphic microsatellite loci from the European anchovy, Engraulis encrasicolus. Mol. Ecol. 5, 266-268 https://doi.org/10.1111/j.1471-8286.2005.00892.x
  12. Magoulas, A., N. Tsimenides, and E. Zouros. 1996. Mitochondrial DNA phylogeny and the reconstruction of the population history of a species: the case of the European anchovy (Engraulis encrasicolus). Mol. Biol. Evol. 13, 178-190 https://doi.org/10.1093/oxfordjournals.molbev.a025554
  13. Raymond, M. and F. Rousset. 1995. GENEPOP: a population genetics software for exact test and ecumencism. J. Hered. 86, 248-249
  14. Schneider, S., J. M. Kueffer, D. Roessli, and L. Excoffier. 1996. Arlequin: a software package for population genetics. Genetics and Biometry Lab., Dept. of Anthropology, University of Geneva
  15. Spanakis, E., N. Tsimenides, and E. Zouros. 1989. Genetic differences between populations of sardine, Sardina pilchardus, and anchovy, Engraulis encrasicolus, in the Aegean and Ionian Seas. J. Fish Biol. 75, 417-437
  16. Tudela, S. 1999. Morphological variability in a Mediterranean, genetically homogeneous population of the European anchovy, Engraulis encrasicolus. Fish Res. 42, 229-243 https://doi.org/10.1016/S0165-7836(99)00052-1
  17. Tudela, S. and I. Palomera. 1997. Trophic ecology of the European anchovy, Engraulis encrasicolus, in the Catalan Sea (north-west Mediterranean). Mar. Ecol. Prog. Ser. 160, 121-134 https://doi.org/10.3354/meps160121
  18. Tudela, S., J. L. Garcia-Marin, and C. Pla. 1999. Genetic structure of the European anchovy, Engraulis encrasicolus 1., in the north-west Mediterranean. J. Exp. Mar. Biol. Ecol. 234, 95-109 https://doi.org/10.1016/S0022-0981(98)00142-7
  19. Wright, J. M. and P. Bentzen. 1994. Microsatellites: genetic markers for the future. Rev. Fish. Biol. Fish 4, 384-388 https://doi.org/10.1007/BF00042912
  20. Yu, H. T., Y. J. Lee, S. W. Huang, and T. S. Chiu. 2002. Genetic analysis of the populations of Japanese anchovy (Engraulidae: Engraulis japonicus) using microsatellite DNA. Mar. Biotechnol. 4, 471-479 https://doi.org/10.1007/s10126-002-0035-8

Cited by

  1. The Pulation Structure of the Pacific Cod (Gadus macrocephalus Tilesius) Based on Mitochondrial DNA Sequences vol.20, pp.3, 2010, https://doi.org/10.5352/JLS.2010.20.3.336
  2. DNA Analysis of mtDNA COI Gene in the Sharp-toothed Eel (Muraenesox cinereus Forskal) from Yeosu, Jinhae, Jeju, Goseoung, Jangheung and Haenam Populations in Korea Using PCR-aided RFLP vol.20, pp.4, 2011, https://doi.org/10.5322/JES.2011.20.4.551