• Title/Summary/Keyword: the signal analysis

Search Result 7,898, Processing Time 0.038 seconds

A study on Setting up Safety Criteria of Railway Signalling System Using FTA(Fault Tree Analysis) (FTA(Fault Tree Analysis)를 이용한 철도신호설비 안전기준대상 선정에 관한 연구)

  • Yoon, Yong-Ki;Jeong, Rag-Gyo;Kim, Yong-Kyu
    • Proceedings of the KSR Conference
    • /
    • 2008.06a
    • /
    • pp.671-675
    • /
    • 2008
  • Railway signal system is responsible for the safety operation of railway and performs vital functions as safe space control, route control and etc. These functions prevent collision accidents between trains and derailment accidents of trains. However, these accidents are occurred by some causes. It is necessary to analysis hazards, hazard frequency and risk contribution. And railway signal system must make practical application of the analysis results. This paper includes analysis results of railway accident data by FTA(Fault Tree Analysis) and hazards. Railway signal system must consider these hazards. This paper used the railway accident data of RSSB(Railway Safety & Standard Board) of UK. We will use the FTA result to set up a draft of safety criteria of railway signal system.

  • PDF

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

Signal Level Analysis of a Camera System for Satellite Application

  • Kong, Jong-Pil;Kim, Bo-Gwan
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.220-223
    • /
    • 2008
  • A camera system for the satellite application performs the mission of observation by measuring radiated light energy from the target on the earth. As a development stage of the system, the signal level analysis by estimating the number of electron collected in a pixel of an applied CCD is a basic tool for the performance analysis like SNR as well as the data path design of focal plane electronic. In this paper, two methods are presented for the calculation of the number of electrons for signal level analysis. One method is a quantitative assessment based on the CCD characteristics and design parameters of optical module of the system itself in which optical module works for concentrating the light energy onto the focal plane where CCD is located to convert light energy into electrical signal. The other method compares the design\ parameters of the system such as quantum efficiency, focal length and the aperture size of the optics in comparison with existing camera system in orbit. By this way, relative count of electrons to the existing camera system is estimated. The number of electrons, as signal level of the camera system, calculated by described methods is used to design input circuits of AD converter for interfacing the image signal coming from the CCD module in the focal plane electronics. This number is also used for the analysis of the signal level of the CCD output which is critical parameter to design data path between CCD and A/D converter. The FPE(Focal Plane Electronics) designer should decide whether the dividing-circuit is necessary or not between them from the analysis. If it is necessary, the optimized dividing factor of the level should be implemented. This paper describes the analysis of the electron count of a camera system for a satellite application and then of the signal level for the interface design between CCD and A/D converter using two methods. One is a quantitative assessment based on the design parameters of the camera system, the other method compares the design parameters in comparison with those of the existing camera system in orbit for relative counting of the electrons and the signal level estimation. Chapter 2 describes the radiometry of the camera system of a satellite application to show equations for electron counting, Chapter 3 describes a camera system briefly to explain the data flow of imagery information from CCD and Chapter 4 explains the two methods for the analysis of the number of electrons and the signal level. Then conclusion is made in chapter 5.

  • PDF

Retrieving the Time History of Displacement from Measured Acceleration Signal

  • Han, Sangbo
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.2
    • /
    • pp.197-206
    • /
    • 2003
  • It is intended to retrieve the time history of displacement from measured acceleration signal. In this study, the word retrieving means reconstructing the time history of original displacement signal from already measured acceleration signal not just extracting various information using relevant signal processing techniques. Unlike extracting required information from the signal, there are not many options to apply to retrieve the time history of displacement signal, once the acceleration signal is measured and recorded with given sampling rate. There are two methods, in general, to convert measured acceleration signal into displacement signal. One is directly integrating the acceleration signal in time domain. The other is dividing the Fourier transformed acceleration signal by the scale factor of - $\omega$$^2$and taking the inverse Fourier transform of it. It turned out both the methods produced a significant amount of errors depending on the sampling resolution in time and frequency domain when digitizing the acceleration signals. A simple and effective way to convert the time history of acceleration signal into the time history of displacement signal without significant errors is studied here with the analysis on the errors involved in the conversion process.

Signal Synthesis Model for Active Sonar Performance Analysis (능동소나 성능분석을 위한 신호 합성 모델)

  • 이균경
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.683-686
    • /
    • 1999
  • In this paper, we develop an active sonar signal synthesis model to analyze the detection performance of active sonar systems in a shallow water environment. Using this model, we synthesize the return signal of a bistatic sonar system at a typical operating frequency. This signal can be used to test proper active sonar signal processing techniques for real applications.

  • PDF

Comparison of Absolute and Differential ECT Signals around Tube Support Plate in Steam Generator

  • Shin, Young-Kil;Lee, Yun-Tai;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.3
    • /
    • pp.201-208
    • /
    • 2005
  • In this paper, absolute and differential eddy current signals from various defects in the steam generator tube are numerically predicted and their signal slope characteristics are investigated. The signal changes due to frequency increase are also observed. After studying signal patterns from various defects and frequencies, the analysis of mixed defect signals affected by the presence of a ferromagnetic support plate is attempted. For the signal prediction, axisymmetric finite element modeling is used and this leads us to the slope angle analysis of the signal. Results show that differential signals are useful for locating the position of a defect under the support plate, while absolute signals are easy to presume and interpret even though the effect of support plate is mixed. Combined use of these two types of signals will help us accomplish a more reliable inspection.

Application of Instantaneous Frequency Analysis(I) -Algorithm Performance and Noise Effects- (순간주파수 분석기법의 응용 (1) -알고리즘간의 성능비교 및 잡음영향-)

  • 김정태;임병덕
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.4
    • /
    • pp.1050-1056
    • /
    • 1994
  • When a vibration data for a rotating machine such as a pump or a compressor is concerned, the frequency fluctuation of the energy contents at an instant time may provide useful information on understanding the vibration characteristics of the rotating machinery, rather than the averaged energy distribution along the frequency axis. Especially, when a periodic signal has different spectral contents, the approach to use the averaged frequency distribution, called the normal frequency analysis, may not be appropriate to extract vibration source characteristics of the structure. This paper introduces a way to analyze the signal based on an instant time. In order to evaluate the performance of the various approach, the investigatation compares three different algorithms which are frequently implemented in the instantaneous frequency analysis. Also for the noise effect embodied in the true signal, various cases for different SN ratio have been examined. The result shows that the noise level is crucial to evalute the instantaneous frequency analysis. In order to implement the instantaneous frequency analysis, the extraction of the relevant information from the measured signal should have the high S/N ratio, i, e., 40 dB or above.

Signal Pattern Analysis of Ground Penetrating Radar for Detecting Road Cavities (도로동공 탐지를 위한 지표투과레이더의 신호패턴에 관한 연구)

  • Yoon, Jin-Sung;Baek, Jongeun;Choi, Yeon Woo;Choi, Hyeon;Lee, Chang Min
    • International Journal of Highway Engineering
    • /
    • v.18 no.6
    • /
    • pp.61-67
    • /
    • 2016
  • OBJECTIVES : The objective of this study is to detect road cavities using multi-channel 3D ground penetrating radar (GPR) tests owned by the Seoul Metropolitan Government. METHODS : Ground-penetrating radar tests were conducted on 204 road-cavity test sections, and the GPR signal patterns were analyzed to classify signal shape, amplitude, and phase change. RESULTS : The shapes of the GPR signals of road-cavity sections were circular or ellipsoidal in the plane image of the 3D GPR results. However, in the longitudinal or transverse direction, the signals showed mostly unsymmetrical (or symmetrical in some cases) parabolic shapes. The amplitude of the GPR signals reflected from road cavities was stronger than that from other media. No particular pattern of the amplitude was found because of nonuniform medium and utilities nearby. In many cases where road cavities extended to the bottom of the asphalt concrete layer, the signal phase was reversed. However, no reversed signal was found in subbase, subgrade, or deeper locations. CONCLUSIONS : For detecting road cavities, the results of the GPR signal-pattern analysis can be applied. In general, GPR signals on road cavity-sections had unsymmetrical hyperbolic shape, relatively stronger amplitude, and reversed phase. Owing to the uncertainties of underground materials, utilities, and road cavities, GPR signal interpretation was difficult. To perform quantitative analysis for road cavity detection, additional GPR tests and signal pattern analysis need to be conducted.

Output Signal Analysis for Variation of Resistance Passive Element in the R-L-C Equivalent Circuit Modeling under Temperature Accident Conditions in NPPs (원전 온도 사고 조건에서 R-L-C회로 모델링 등가 회로의 저항 수동 소자 변화에 대한 출력 신호 분석)

  • Koo, Kil-Mo;Kim, Sang-Baik;Kim, Hee-Dong;Cho, Young-Ro
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.600-602
    • /
    • 2006
  • Some abnormal signals diagnostics and analysis through an important equivalent circuits modeling for passive elements under severe accident conditions have been performed. Unlike the design basis accidents, there are inherently some uncertainties in the instrumentation capabilities under the accident conditions. So, the circuit simulation analysis and diagnosis methods are used to assess instruments in detail when they give apparently abnormal readings as an accident alternative method. The simulations can be useful to investigate what the signal and circuit characteristics would be when similar to a variety of symptoms that can result from the environmental conditions such as high temperature, humidity, and pressure condition. In this paper, a new simulator through an analysis of the important equivalent circuits modeling under temperature accident conditions has been designed, the designed simulator is composed of the LabVIEW code as a main tool and the out-put file of the Multi-SIM code as an engine tool is exported to in-put file of the LabVIEW code. The procedure for the simulator design was divided into two design steps, of which the first step was the diagnosis method, the second step was the circuit simulator for the signal processing tool. It has three main functions which are a signal processing tool, an accident management tool, and an additional guide from the initial screen. This simulator should be possible that it could be applied a output signal analysis to some transient signal by variation of the resistance passive elements in the R-L-C equivalent circuit modeling under various degraded conditions in NPPs.

  • PDF

Wavelet Analysis of Visualized Image (가시화 영상의 웨이브렛 해석)

  • Park, Young-Sik;Kim, Okug-Gyu
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.3
    • /
    • pp.143-148
    • /
    • 2007
  • The many studies have been proceeding to express accurately the feature of a sudden signal and a uncertain system in the image processing field. It is well know that Fourier Transform is widely used for frequency analysis of any signal. However, The frequency transform domain is not used for expressing the sudden signal change and non-stationary signal at the time-axis by this method. This paper describes of image analysis by discrete wavelet transform. Wavelet modulus maxima on transformed plane gives the Lipschitz exponent expression, which is useful to examine the characteristics of signal or the edge of an image. It is possible to reconstruct the original image only using the few maxima points. The fractal analysis is applied as an examples. The visualized image of oil flow on a ship model is analyzed. The fractal variable is obtained by the maxima analysis and the good results on the exprement is obtained by the visualized image analysis.

  • PDF