• Title/Summary/Keyword: the monitoring

Search Result 26,611, Processing Time 0.072 seconds

Investigation on Characteristics of High PM2.5 Pollution Occurred during October 2015 in Gwangju (광주 지역에서 2015년 10월에 발생한 PM2.5 고농도 사례 특성 분석)

  • Yu, Geun-Hye;Park, Seung-Shik;Jung, Sun A;Jo, Mi Ra;Lim, Yong Jae;Shin, Hye Jung;Lee, Sang Bo;Ghim, Young Sung
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.34 no.4
    • /
    • pp.567-587
    • /
    • 2018
  • A severe haze event occurred in October 2015 in Gwangju, Korea. In this study, the driving chemical species and the formation mechanisms of $PM_{2.5}$ pollution were investigated to better understand the haze event. Hourly concentrations of $PM_{2.5}$, organic and elemental carbon, water-soluble ions, and elemental constituents were measured at the air quality intensive monitoring station in Gwangju. The haze event occurred was attributed to a significant contribution (72.3%) of secondary inorganic species concentration to the $PM_{2.5}$, along with the contribution of organic aerosols that were strongly attributed to traffic emissions over the study site. MODIS images, weather charts, and air mass backward trajectories supported the significant impact of long-range transportation (LTP) of aerosol particles from northeastern China on haze formation over Gwangju in October 2015. The driving factor for the haze formation was stagnant atmospheric flows around the Korean peninsula, and high relative humidity (RH) promoted the haze formation at the site. Under the high RH conditions, $SO{_4}^{2-}$ and $NO_3{^-}$ were mainly produced through the heterogenous aqueous-phase reactions of $SO_2$ and $NO_2$, respectively. Moreover, hourly $O_3$ concentration during the study period was highly elevated, with hourly peaks ranging from 79 to 95ppb, suggesting that photochemical reaction was a possible formation process of secondary aerosols. Over the $PM_{2.5}$ pollution, behavior and formation of secondary ionic species varied with the difference in the impact of LTP. Prior to October 19 when the influence of LTP was low, increasing rate in $NO_3{^-}$ was greater than that in $NO_2$, but both $SO_2$ and $SO{_4}^{2-}$ had similar increasing rates. While, after October 20 when the impact of haze by LTP was significant, $SO{_4}^{2-}$ and $NO_3{^-}$ concentrations increased significantly more than their gaseous precursors, but with greater increasing rate of $NO_3{^-}$. These results suggest the enhanced secondary transformation of $SO_2$ and $NO_2$ during the haze event. Overall, the result from the study suggests that control of anthropogenic combustion sources including vehicle emissions is needed to reduce the high levels of nitrogen oxide and $NO_3{^-}$ and the high $PM_{2.5}$ pollution occurred over fall season in Gwangju.

The Structure of the Plant Community in Seonamsagol(Valley), Jogyesan(Mt.) Provincial Park, Suncheon City (순천시 조계산도립공원 선암사골 계곡부 식물군집구조)

  • Kim, Jong-Yup
    • Korean Journal of Environment and Ecology
    • /
    • v.26 no.4
    • /
    • pp.593-603
    • /
    • 2012
  • This study was carried out to investigate the ecological succession sere and conservative value, and to provide the basic data for the planning of the Provincial Park Management in Seonamsagol(Valley), Jogyesan(Mt.) Provincial Park(altitude 884m), Suncheon City, Korea by analysing the structure of the plant community. Twenty plots(size is $20m{\times}20m$) were set up at an altitude of range from 315m to 480m. As a result of analysis of TWINSPAN which is one of the ordination technique, the plant communities were divided into four groups which are community I(Quercus variabilis community), community II(Q. serrata community), community III(Decideous broad-leaved plant community), and community IV(Carpinus tschonoskii community). The warmth index is $104^{\circ}C{\cdot}month$ based on the data of monthly mean temperature during the past thirty years(1981~2010), so we found out that the vegetation of the study site located in the South Temperate Climate Zone. We supposed that the ecological succession sere of the study site is in the early stage of developing from Q. serrata community to Carpinus tshonoskii community, however we should do a long-term monitoring to investigate the changes of the ecological succession each plant community, meanwhile Sasa borealis was dominant species in the shrub layer. The diameter at breast height of specimen tree is range from 20 to 55cm(average 36cm) and the height of that is range from 14 to 35m(average 23cm). The age of community I was 64 years old, that of community II was from 59 to 64 years old, that of community III was from 51 to 62 years old, and that of community IV was from 41 to 68 years old, thus the age of the study site is about from 38 to 72 years old. According to the index of Shnnon's diversity(unit: $400m^2$), community IV was ranged from 0.8452 to 1.2312, community III was ranged from 0.8044 to 1.1404, community II was ranged from 0.8221 to 0.9971, and community I was 0.8324.

The Comorbidity of Periodic Limb Movements Disorder in Patients with Sleep-Related Breathing Disorder (수면관련 호흡장애 환자에서의 수면중 주기성 사지운동장애의 동반이환율)

  • Yang, Chang-Kook;Son, Choon-Hee
    • Tuberculosis and Respiratory Diseases
    • /
    • v.45 no.5
    • /
    • pp.1039-1046
    • /
    • 1998
  • Background: Sleep-related breathing disorders(SRBD) and periodic leg movements disorder(PLMD) are both common, and are considered as separate sleep disorders. However, both disorders show high comorbidity. SRBD and PLMD can result in excessive daytime sleepiness and insomnia due to frequent sleep fragmentation. So, it is very important to consider the presence of PLMD, when we are dealing with the diagnosis and management of SRBD. The objectives of this study were to determine the incidence of PLMD in patients with SRBD, and to describe any differences between patients with and without PLMD. Method: The authors reviewed the sleep recordings of 106 patients with a final diagnosis of SRBD(obstructive sleep apnea or upper airway resistance syndrome), who underwent full nocturnal polysomnography, including the monitoring of the anterior tibialis electromyogram. All sleep records were recorded and scored using the standard criteria. The data was analyzed by the student t-test. Result: 106 patients(M=76, F=30) were included in the analysis. Data revealed a mean age of $49.5{\pm}13.6$ years, a respiratory disturbance index(RDI) of $22.3{\pm}25.4$/hour sleep, a lowest oxygen saturation of $84.9{\pm}11.3%$, a maximal esophageal pressure of $-41.0{\pm}19.1cmH_2O$, and PLM index(PLMI) of $13.1{\pm}22.4$movements/hour sleep. Forty four percent(47 of 106 patients) had a PLMI of greater than 5 on this study. The mean age of the patients with PLMD was significantly higher than that of the patients without PLMD(p<0.005). Female patients with SRBD accompanied more PLMD(p<0.05). The apnea index of the patients with PLMD was significantly lower than that of the patients without PLMD(p<0.01). The percentage of stage 1 sleep in the patients with PLMD was significantly lower than that of the patients without PLMD(p<0.05). Conclusion: The prevalence of PLMD in the patients with SRBD was high at 44.3%. The patients with PLMD were older and had more high RDI in comparison to the patients without PLMD, which was consistent with previous findings. The authors recommend that more careful consideration of PLMD is required when diagnosing and treating SRBD.

  • PDF

Factor Analysis of Soil and Water Quality Indicators in Different Agricultural Areas of the Han River Basins (한강수계 농업지대에서 토양과 수질 지표에 대한 요인 분석)

  • Jung, Yeong-Sang;Yang, Jae-E;Joo, Jin-Ho;Kim, Jeong-Je;Kim, Hyun-Jeong;Ha, Sang-Keun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.4
    • /
    • pp.398-404
    • /
    • 1999
  • Factor analysis technique was employed to screen the principal indicators influencing soil and water qualities in the intensively cultivated areas of the Han River Basin. Soil chemical parameters were analyzed for the soil samples collected at intensive farming area in Pyungchang-Gun, and water quality monitoring data were obtained from the agricultural small catchments of Han River Basin during 1996 and 1997. Among the $11{\times}11$ cross correlation matrix, 29 correlations were significant out of 55 soil quality indicator pairs. The overall Kaiser's measure of sampling adequacy(KMS) value was acceptable with 0.60. Most indicators except iron were acceptable. Among soil indicators, the first factors showing high factor loadings were pH, Ca and Mg. The factor loading was the highest for Ca. The second factor could be characterized as phosphate and micronutrient. The third factor was organic matter and EC, and the fourth factor was potassium and Fe. Out of 190 water quality indicators, 86 correlations were significant. Overall KMS value was 0.74, but the KMS values for pH, TSS, Cd, Cu and Fe were lower than 50. The first factor of EC accounts 27.1 percents of the total variance, and showed high factor loadings with Na, Ca, $SO_4$, Mg, K, Cl, $NO_3$, and T-N. The second factor showed high loadings with Zn, Fe, Mn and Cd. The third to seventh factors could be characterized as $PO_4$, TSS, inorganic nitrogen, pH and T-P, and Cu factors, respectively. The factor score for EC was the highest in Kuri, followed by Chunchon, Dunnae and Daegwanryng. The factor score for heavy metals were the highest in the Daegwanryng. The results demonstrated that the factor analysis could be useful to select the most principal factor influencing soil and water qualities in the agricultural watershed.

  • PDF

Estimation of Allowable Bearing Capacity and Settlement of Deep Cement Mixing Method for Reinforcing the Greenhouse Foundation on Reclaimed Land (간척지 온실기초 보강을 위한 심층혼합처리공법의 허용지내력 및 침하량 산정)

  • Lee, Haksung;Kang, Bang Hun;Lee, Kwang-seung;Lee, Su Hwan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.287-294
    • /
    • 2021
  • In order to expand facility agriculture and reduce greenhouse construction costs in reclaimed land, a greenhouse foundation method that satisfies economic feasibility and structural safety at the same time is required. As an alternative, the allowable bearing capacity and settlement were reviewed when the DCM(Deep cement mixing) method was applied among the soft ground reinforcement methods. To examine the applicability of the greenhouse foundation, the allowable bearing capacity and settlement were calculated by applying the theory of Terzaghi, Meyerhof, Hansen, and Schmertmann. In case of the diameter of 800mm and the width and length of the foundation of 4m, the allowable bearing capacity was 179kN/m2 and the settlement was 7.25mm, which satisfies the required bearing capacity and settlement standards. The calculation results were verified through FEM(Finite element method) analysis using the Mohr-Coulomb material model. The allowable bearing capacity was 169kN/m2 and the settlement was 2.52mm. The bearing capacity showed an error of 5.6% compared to calculated value, and the settlement showed and error of 65.4%. Through theoretical calculations and FEM analysis, it was confirmed that the allowable bearing capacity and settlement satisfies the design criteria as a greenhouse foundation when the width and length of the foundation were 4m. Based on the verified design values, it is expected to be able to present the foundation design criteria for greenhouses through empirical tests such as bearing capacity tests and long-term settlement monitoring.

Surface Change Detection in the March 5Youth Mine Using Sentinel-1 Interferometric SAR Coherence Imagery (Sentinel-1 InSAR 긴밀도 영상을 이용한 3월5일청년광산의 지표 변화 탐지)

  • Moon, Jihyun;Kim, Geunyoung;Lee, Hoonyol
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.531-542
    • /
    • 2021
  • Open-pit mines require constant monitoring as they can cause surface changes and environmental disturbances. In open-pit mines, there is little vegetation at the mining site and can be monitored using InSAR (Interferometric Synthetic Aperture Radar) coherence imageries. In this study, activities occurring in mine were analyzed by applying the recently developed InSAR coherence-based NDAI (Normalized Difference Activity Index). The March 5 Youth Mine is a North Korean mine whose development has been expanded since 2008. NDAI analysis was performed with InSAR coherence imageries obtained using Sentinel-1 SAR images taken at 12-day intervals in the March 5 Youth Mine. First, the area where the elevation decreased by about 75.24 m and increased by about 9.85 m over the 14 years from 2000 was defined as the mining site and the tailings piles. Then, the NDAI images were used for time series analysis at various time intervals. Over the entire period (2017-2019), average mining activity was relatively active at the center of the mining area. In order to find out more detailed changes in the surface activity of the mine, the time interval was reduced and the activity was observed over a 1-year period. In 2017, we analyzed changes in mining operations before and after artificial earthquakes based on seismic data and NDAI images. After the large-scale blasting that occurred on 30 April 2017, activity was detected west of the mining area. It is estimated that the size of the mining area was enlarged by two blasts on 30 September 2017. The time-averaged NDAI images used to perform detailed time-series analysis were generated over a period of 1 year and 4 months, and then composited into RGB images. Annual analysis of activity confirmed an active region in the northeast of the mining area in 2018 and found the characteristic activity of the expansion of tailings piles in 2019. Time series analysis using NDAI was able to detect random surface changes in open-pit mines that are difficult to identify with optical images. Especially in areas where in situ data is not available, remote sensing can effectively perform mining activity analysis.

A Comparison between the Reference Evapotranspiration Products for Croplands in Korea: Case Study of 2016-2019 (우리나라 농지의 기준증발산 격자자료 비교평가: 2016-2019년의 사례연구)

  • Kim, Seoyeon;Jeong, Yemin;Cho, Subin;Youn, Youjeong;Kim, Nari;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.6_1
    • /
    • pp.1465-1483
    • /
    • 2020
  • Evapotranspiration is a concept that includes the evaporation from soil and the transpiration from the plant leaf. It is an essential factor for monitoring water balance, drought, crop growth, and climate change. Actual evapotranspiration (AET) corresponds to the consumption of water from the land surface and the necessary amount of water for the land surface. Because the AET is derived from multiplying the crop coefficient by the reference evapotranspiration (ET0), an accurate calculation of the ET0 is required for the AET. To date, many efforts have been made for gridded ET0 to provide multiple products now. This study presents a comparison between the ET0 products such as FAO56-PM, LDAPS, PKNU-NMSC, and MODIS to find out which one is more suitable for the local-scale hydrological and agricultural applications in Korea, where the heterogeneity of the land surface is critical. In the experiment for the period between 2016 and 2019, the daily and 8-day products were compared with the in-situ observations by KMA. The analyses according to the station, year, month, and time-series showed that the PKNU-NMSC product with a successful optimization for Korea was superior to the others, yielding stable accuracy irrespective of space and time. Also, this paper showed the intrinsic characteristics of the FAO56-PM, LDAPS, and MODIS ET0 products that could be informative for other researchers.

Application of Flux Average Discharge Equation to Assess the Submarine Fresh Groundwater Discharge in a Coastal Aquifer (연안 대수층의 해저 담지하수 유출량 산정을 위한 유량 평균 유출량 방정식의 적용)

  • Il Hwan Kim;Min-Gyu Kim;Il-Moon Chung;Gyo-Cheol Jeong;Sunwoo Chang
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.105-119
    • /
    • 2023
  • Water supply is decreasing due to climate change, and coastal and island regions are highly dependent on groundwater, reducing the amount of available water. For sustainable water supply in coastal and island regions, it is necessary to accurately diagnose the current condition and efficiently distribute and manage water. For a precise analysis of the groundwater flow in the coastal island region, submarine fresh groundwater discharge was calculated for the Seongsan basin in the eastern part of Jeju Island. Two methods were used to estimate the thickness of the fresh groundwater. One method employed vertical interpolation of measured electrical conductivity in a multi depth monitoring well; the other used theoretical Ghyben-Herzberg ratio. The value using the Ghyben-Herzberg ratio makes it impossible to accurately estimate the changing salt-saltwater interface, and the value analyzed by electrical conductivity can represent the current state of the freshwater-saltwater interface. Observed parameter was distributed on a virtual grid. The average of submarine fresh groundwater discharge fluxes for the virtual grid was determined as the watershed's representative flux. The submarine fresh groundwater discharge and flux distribution by year were also calculated at the basin scale. The method using electrical conductivity estimated the submarine fresh groundwater discharge from 2018 to 2020 to be 6.27 × 106 m3/year; the method using the Ghyben-Herzberg ratio estimated a discharge of 10.87 × 106 m3/year. The results presented in this study can be used as basis data for policies that determine sustainable water supply by using precise water budget analysis in coastal and island areas.

Seasonal Variations of Microphytobenthos in Sediments of the Estuarine Muddy Sandflat of Gwangyang Bay: HPLC Pigment Analysis (광합성색소 분석을 통한 광양만 갯벌 퇴적물 중 저서미세조류의 계절변화)

  • Lee, Yong-Woo;Choi, Eun-Jung;Kim, Young-Sang;Kang, Chang-Keun
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.14 no.1
    • /
    • pp.48-55
    • /
    • 2009
  • Seasonal variations of microalgal biomass and community composition in both the sediment and the seawater were investigated by HPLC pigment analysis in an estuarine muddy sandflat of Gwangyang Bay from January to November 2002. Based on the photosynthetic pigments, fucoxanthin, diadinoxanthin, and diatoxanthin were the most dominant pigments all the year round, indicating that diatoms were the predominant algal groups of both the sediment and the seawater in Gwangyang Bay. The other algal pigments except the diatom-marker pigments showed relatively low concentrations. Microphytobenthic chlorophyll ${\alpha}$ concentrations in the upper layer (0.5 cm) of sediments ranged from 3.44 (March at the middle site of the tidal flat) to 169 (July at the upper site) mg $m^{-2}$, with the annual mean concentrations of $68.4{\pm}45.5,\;21.3{\pm}14.3,\;22.9{\pm}15.6mg\;m^{-2}$ at the upper, middle, and lower tidal sites, respectively. Depth-integrated chlorophyll ${\alpha}$ concentrations in the overlying water column ranged from 1.66 (November) to 11.7 (July) mg $m^{-2}$, with an annual mean of $6.96{\pm}3.04mg\;m^{-2}$. Microphytobenthic biomasses were about 3${\sim}$10 times higher than depth-integrated phytoplankton biomass in the overlying water column. The physical characteristics of this shallow estuarine tidal flat, similarity in taxonomic composition of the phytoplankton and microphytobenthos, and similar seasonal patterns in their biomasses suggest that resuspended microphytobenthos are an important component of phytoplankton biomass in Gwangyang Bay. Therefore, considering the importance of microphytobenthos as possible food source for the estuarine benthic and pelagic consumers, a consistent monitoring work on the behavior of microphytobenthos is needed in the tidal flat ecosystems.

Fate Analysis and Impact Assessment for Vehicle Polycyclic Aromatic Hydrocarbons (PAHs) Emitted from Metropolitan City Using Multimedia Fugacity Model (다매체거동모델을 이용한 대도시 자동차 배출 Polycyclic Aromatic Hydrocarbons (PAHs) 거동 해석 및 영향평가)

  • Rhee, Gahee;Hwangbo, Soonho;Yoo, ChangKyoo
    • Korean Chemical Engineering Research
    • /
    • v.56 no.4
    • /
    • pp.479-495
    • /
    • 2018
  • This study was carried out to research the multimedia fate modeling, concentration distribution and impact assessment of polycyclic aromatic hydrocarbons (PAHs) emitted from automobiles, which are known as carcinogenic and mutation chemicals. The amount of emissions of PAHs was determined based on the census data of automobiles at a target S-city and emission factors of PAHs, where multimedia fugacity modeling was conducted by the restriction of PAHs transfer between air-soil at the impervious area. PAHs' Concentrations and their distributions at several environmental media were predicted by multimedia fugacity model (level III). The residual amounts and the distributions of PAHs through mass transfer of PAHs between environment media were used to assess the health risk of PAHs at unsteady state (level IV), where the sensitivity analyses of the model parameter of each variable were conducted based on Monte Carlo simulation. The experimental result at S-city showed that Fluoranthene among PAHs substances are the highest residual concentrations (60%, 53%, 32% and 34%) at all mediums (atmospheric, water, soil, sediment), respectively, where most of the PAHs were highly accumulated in the sediment media (more than 80%). A result of PAHs concentration changes in S-city over the past 34 years identified that PAHs emissions from all environmental media increased from 1983 to 2005 and decreased until 2016, where the emission of heavy-duty vehicle including truck revealed the largest contribution to the automotive emissions of PAHs at all environment media. The PAHs concentrations in soil and water for the last 34 years showed the less value than the legal standards of PAHs, but the PAHs in air exceeded the air quality standards from 1996 to 2016. The result of this study is expected to contribute the effective management and monitoring of toxic chemicals of PAHs at various environment media of Metropolitan city.