• Title/Summary/Keyword: the minimum ignition limit voltage

Search Result 6, Processing Time 0.022 seconds

A Study on the Improved Ignition Limit with Resistor for Propan-air Mixture Gas (저항을 이용한 프로판-공기 혼합가스의 점화한계 개선에 관한 연구)

  • 이춘하;오종용;옥경재;지승욱;이광식;심광렬
    • Fire Science and Engineering
    • /
    • v.18 no.1
    • /
    • pp.18-23
    • /
    • 2004
  • This paper describes the minimum ignition limits for propane-air 5.25 Vol.% mixture gases in low voltage inductive circiuts. The improved effects on the ignition limit are studied by parallel safety components(resistors) for propane-air 5.25 Vol.% mixture gas in low voltage inductive circuits. The experimental devices used in this test are the IEC type spark ignition test apparatus. The minimum ignition limits are controlled by the values of current in inductive circuit. Energy supplied from electric source is first accumulated at the inductance, it's extra energy is working as ignition source of the explosive gas. The improved effects on the ignition limit are respectively obtained as the maximum rising rate of 330% by composing parallel circuits between inductance and resistor as compared with disconnecting inductance with the safety components. The more values of inductance increase the higher improved effects of ignition limit rise. The less values of resistor the higher improved effects of ignition limit rise. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof machines which are applied equipment and detectors used in dangerous areas but also for datum for its equipment tests.

An Experimental Study on the Minimum Ignition Energy in Low Voltage Spark Discharge by Electrode Material (방전전극 재질과 최소점화에너지에 관한 실험 연구)

  • Choi, Sang-Won
    • Journal of the Korean Society of Safety
    • /
    • v.27 no.3
    • /
    • pp.63-70
    • /
    • 2012
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be the explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, powder filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy; this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Electrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type(International Electro-technical Commission) spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of electrode make-and-break speed.

A Study on the Minimnum Ignition Limit for LPG-Air Mixtures by Switching Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 점화한계에 관한 연구)

  • Jee, S.W.;Song, H.J.;Lee, C.H.;Park, W.Z.;Lee, K.S.;Lee, D.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1854-1856
    • /
    • 1996
  • This study describes the minimum ignition limit for LPG-Ai-r mixtures by switching sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltage is increased in proportional to the rate of increasing of frequency in LPG-Air mixed gas. Especially, increment between 10[kHz] and 30[kHz] is typical. It is considered that ignition is caused by one discharge until 10 [kHz] and, beyond 10[kHz] ignition is caused by more than two discharges. The reason is analysed that energy loss is caused by existing pause interval between discharges.

  • PDF

A Study on The Ignition Limit of Flammable Gases by Discharge Spark of Resistive Circuit (저항회로의 개폐불꽃에 의한 폭발성 가스의 점화한계에 관한 연구)

  • Lee Chun-Ha
    • Journal of the Korean Institute of Gas
    • /
    • v.1 no.1
    • /
    • pp.106-112
    • /
    • 1997
  • This study measured the ignition limits of methane-air, propane-air, ethylene-air, and hydrogen-air mixture gases by discharge spark of D.C. power resistive circuit. The used experimental device is the IEC type spark ignition test apparatus, it consists of explosion chamber and supply -exhaust system of mixture gas. Mixture gases (methane-air, propane-air, ethylene-air, and hydrogen-air) were put into explosion chamber of IEC type spark ignition test apparatus, then it was confirmed whether ignition was made by 3,200 times of discharge spark between tungsten electrode and cadmium electrode. The ignition limits were found by increasing or decreasing the value of current. For the exact experiment, the ignition sensitivity was calibrated before and after the experiment in each condition. The ignition limits were found by changing the value of concentration of each gas-air mixture in D.C. 24 [V] resistive circuit. As the result of experiment, it was found that the minimum ignition limit currents exist at the value of methane-air 8.3 [$Vol\%$], propane-air 5.25[$Vol\%$], ethylene-air 7.8 [$Vol\%$], and hydrogen-air 21[$Vol\%$] mixture gases. For each the minimum ignition concentration of gases, the relationships between voltage and minimum ignition current were found. The results are as follows. - The minimum ignition limits are decreasing in the order of methane, propane, ethylene, and hydrogen. - The value of ignition current is inversely proportional to the value of source voltage. - The minimum ignition limit currents increase sharply at more than 2 [A]. The reason is caused by overheating the electrode.

  • PDF

Effect of Electrode Material on the Minimum Ignition Energy in Low-Voltage Spark Discharge (저압방전 불꽃에서 전극재질이 점화에너지에 미치는 영향)

  • Choi, Sang-Won;Lee, Gwan-Hyung;Moon, Jung-Gi
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1394-1397
    • /
    • 1995
  • In the hazardous areas where explosive gases, vapor or mists exist, electrical apparatus and installations must be of explosion-proof construction to prevent or limit the danger of the ignition of potentially explosive atmosphere. In Korea, nine types of protection have been specified in the government regulations at present: flameproof enclosure, pressurization, oil immersion, increased safety, intrinsic safety, non-incendive, sand filling, encapsulation, and special types. Among these types, the intrinsic safety has the construction which limit or by-pass igniting the electric energy using electronic devices. This type has lots of merits but at the same time requires a high-degree of technology. In this paper, we investigated several dominating factors which affect the minimum ignition energy: this energy plays a very important role in design and evaluation of the intrinsic safety type electrical apparatus. Eletrode material, which is one of the most important factors, was intensively studied for the five sorts of material(Al, Cd, Mg, Sn, and Zn) with performing experiment in a low-voltage inductive circuit using IEC-type spark apparatus. The experimental results show that the minimum ignition energy of electrode material is varied: highest in Cd and lowest in Sn. We also confirmed the effect of eletrode make-and-break speed and magnetic field magnitude.

  • PDF

A Study on the Minimum Ignition Limit Voltages for LPG-Air Mixtures by Discharge Sparks in Radio-frequency Circuits (고주파 전기회로의 개폐불꽃에 의한 LPG-공기 혼합가스의 최소점화한계전압에 관한 연구)

  • Lee Chun-ha;Kim Jae-ouk;Jee Sung-ouk;Song Hun-jik;Lee Gang-sik;Lee Dong-in
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.79-84
    • /
    • 1998
  • This paper describes the minimum ignition limit voltages for LPG-Air 5.25[Vol$\%$] mixture gas by discharge sparks in radio-frequency limits using RF power supply and IEC type ignition spark apparatus. As a result, the minimum ignition limit voltages is increased in proportional to the rate of increasing of frequency in LPG-Air mixture gas. Especially, the minimum ignition limit voltages increase remarkably between 3[KHz] and 10[KHz]. It is considered that ignition is caused by one discharge until 3[KHz] and, beyond 3[KHz] ignitiof is caused by more than two discharges. The reason is analyzed that energy loss is caused by existing pause interval between discharges. It is considered that the result can be used for not only data for researches and development of intrinsically safe explosion-proof RF machines which are applied tole-equipments and detectors used in dangerous areas but also for datum for its equipment tests.

  • PDF