• Title/Summary/Keyword: the middle school mathematics

Search Result 897, Processing Time 0.022 seconds

An Analysis on the Understanding of High School Students about the Concept of a Differential Coefficient Based on Integrated Understanding (통합적 이해의 관점에서 본 고등학교 학생들의 미분계수 개념 이해 분석)

  • Lee, Hyun Ju;Ryu, Jung Hyeon;Cho, Wan Young
    • Communications of Mathematical Education
    • /
    • v.29 no.1
    • /
    • pp.131-155
    • /
    • 2015
  • The purpose of this study is to investigate if top-ranked high school students do integrated understanding about the concept of a differential coefficient. For here, the meaning of integrated understanding about the concept of a differential coefficient is whether students understand tangent and velocity problems, which are occurrence contexts of a differential coefficient, by connecting with the concept of a differential coefficient and organically understand the concept, algebraic and geometrical expression of a differential coefficient and applied situations about a differential coefficient. For this, 38 top-ranked high school students, who are attending S high school, located in Cheongju, were selected as subjects of this analysis. The test was developed with high-school math II textbooks and various other books and revised and supplemented by practising teachers and experts. It is composed of 11 questions. Question 1 and 2-(1) are about the connection between the concept of a differential coefficient and algebraic and geometrical expression, question 2-(2) and 4 are about the connection between occurrence context of the concept and the concept itself, question 3 and 10 are about the connection between the expression with algebra and geometry. Question 5 to 9 are about applied situations. Question 6 is about the connection between the concept and application of a differential coefficient, question 8 is about the connection between application of a differential coefficient and expression with algebra, question 5 and 7 are about the connection between application of a differential coefficient, used besides math, and expression with geometry and question 9 is about the connection between application of a differential coefficient, used within math, and expression with geometry. The research shows the high rate of students, who organizationally understand the concept of a differential coefficient and algebraic and geometrical expression. However, for other connections, the rates of students are nearly half of it or lower than half.

A Mathematics Teacher's Reflective Practice as a Process of Professional Development (전문성 신장 과정으로서의 한 수학교사의 성찰적 실천)

  • Kim, Dong-Won
    • Communications of Mathematical Education
    • /
    • v.23 no.3
    • /
    • pp.735-760
    • /
    • 2009
  • Most of every teachers' life is occupied with his or her instruction, and a classroom is a laboratory for mutual development between teacher and students also. Namely, a teacher's professionalism can be enhanced by circulations of continual reflection, experiment, verification in the laboratory. Professional development is pursued primarily through teachers' reflective practices, especially instruction practices which is grounded on $Sch\ddot{o}n's$ epistemology of practices. And a thorough penetration about situations or realities and an exact understanding about students that are now being faced are foundations of reflective practices. In this study, at first, we explored the implications of earlier studies for discussing a teacher's practice. We could found two essential consequences through reviewing existing studies about classroom and instructions. One is a calling upon transition of perspectives about instruction, and the other is a suggestion of necessity of a teachers' reflective practices. Subsequently, we will talking about an instance of a middle school mathematics teacher's practices. We observed her instructions for a year. She has created her own practical knowledges through circulation of reflection and practices over the years. In her classroom, there were three mutual interaction structures included in a rich expressive environments. The first one is students' thinking and justifying in their seats. The second is a student's explaining at his or her feet. The last is a student's coming out to solve and explain problem. The main substances of her practical know ledges are creating of interaction structures and facilitating students' spontaneous changes. And the endeavor and experiment for diagnosing trouble and finding alternative when she came across an obstacles are also main elements of her practical knowledges Now, we can interpret her process of creating practical knowledge as a process of self-directed professional development when the fact that reflection and practices are the kernel of a teacher's professional development is taken into account.

  • PDF

An analysis of current condition of student's selection process in Hansung science highschool (한성과학고등학교 학생 선발과정의 현황 분석)

  • Dong, Hyo-Kwan;Jhun, Young-Seok
    • Journal of Gifted/Talented Education
    • /
    • v.13 no.4
    • /
    • pp.65-94
    • /
    • 2003
  • The purpose of this study is to acquire the information on the current situation of students' selection process in order to renovate the system of picking up the students. As a first step of the study, we examined the validity of the factors of the single-out system such as qualification and the process for the application and the standards and proceeding of the selection. Then we analysed the result of the entrance examination of Hansung Science Highschool in 2002. The analysis was on the correlation between the result of entrance examination and the achievement in the school and the decision of the course after graduation. To know on the achievement of the students, we investigated the records of regular tests and asked the teachers' opinion in math and science classes. As a result, we gained the following points: First, the present single-out system has a danger of excluding students who are much talented in science and math field because it is based on students' achievements in middle schools; Second, the new selection system should consider the character and attitude of the applicants in addition to their knowledge; Third, the continuous observation of the teacher in middle school should be an important factor of the picking up system; Fourth, more questions requiring divergent thinking ability and inquiry skill should be developed as selective examination question. Also examination questions should cover the various contents from mathematics to science, and do not affect pre-learning; Finally, the system of present letting all students stand in one line should be changed into that of letting students in various lines. We can consider using multi-step selection system.

Design and Implementation of an Problem-Solving Based and Self-Directed Learning System on Web (웹에서 문제 해결 기반 및 자기 주도적학습 시스템의 설계와 구현)

  • Kim, Kyung-Deok;Lee, Sang-Woon
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.7
    • /
    • pp.944-955
    • /
    • 2004
  • The modern society as a high-level information-oriented society lays a great emphasis on lifelong education. It emphasizes all the learners' creative learning ability and various teaching-learning methods as well. We need the self-directed learning to meet these requirements, and one of the solutions is the self-directed teaching-learning process employing the web. Though many educators, so far, developed a number of teaching materials, they are no more than web-based teaching materials for simple learning activities or simple item-bank systems. So, this paper suggests an problem-solving based and self-directed learning system on web in order to overcome such simplicities, and it shows design and implementation of the system. Suggested learning system enables learners to get thinking skill though self-directed control of learning level after they learn the basic concepts and principles on the web as self-directed learning. For example, the system was applied to mathematics education for a middle school students. It supports a test of questions chosen from the item bank in a self-directed way, and helps learners to understand their learning levels for themselves and to solve their questions through on-line discussions with their instructor. The system can also be helpful in improving the learners' learning effects by sharing mutual information through the data room or the Q&A between learners and learners or between learners and instructors.

  • PDF

A Study on the Development of Experiential STEAM Program Based on Visual Impairment Using 3D Printer: Focusing on 'Sun' Concept (3D프린터 활용 체험형 STEAM 프로그램 개발 연구: '태양' 개념을 중심으로)

  • Kim, Sanggul;Kim, Hyoungbum;Kim, Yonggi
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.15 no.1
    • /
    • pp.62-75
    • /
    • 2022
  • In this study, experiential STEAM program using 3D printer was produced focusing on the content elements of 'solar' in the 2015 revised science curriculum, and in order to find out the effectiveness of the STEAM program, analyzed creative problem solving, STEAM attitude, and STEAM satisfaction by applying it to two middle school 77 students simple random sampled. The results of this study are as follows. First, a solar tactile model was produced using a 3D printer, and a program was developed to enable students to actively learn experience-oriented activities through visual impairment experiences. Second, in the response sample t-test by the difference in pre- and post-score of STEAM attitude tests, significant statistical test results were shown in 'interest', 'consideration', 'self-concept', 'self-efficacy', and 'science and engineering career choice' sub-factors except 'consideration' and 'usefulness / value recognition' sub-factors (p<.05). Third,, the STEAM satisfaction test conducted after the application of the 3D printer-based STEAM program showed that the average value range of sub-factors were 3.66~3.97, which improved students' understanding and interest in science subjects through the 3D printer-based STEAM program.

Drawing up class module elements of originality and convergence and suggesting class modules by combining middle school physical education and STEAM (중학교 체육과 STEAM 융합을 통한 창의·융합 수업 모듈 요소 도출 및 수업 모듈 제시)

  • Hong, Hee-Jung;Lim, Hyun-Joo
    • Journal of Wellness
    • /
    • v.14 no.2
    • /
    • pp.207-223
    • /
    • 2019
  • The purpose This study aimed at proposing class module elements for creativity and convergence and class models for creativity and convergence by integrating content elements by physical activity field(health, challenge, competition, ) for physical education and STEAM. For this, literature review, focus group interview(FGI) and discussions with experts were conducted, and the following study results have been drawn up: First, concerning the class module elements for creativity and convergence, total 11 class module elements in the health field were suggested including detecting risks by posture analysis and analyzing and designing amount of physical activity. Second, total 7 module elements in the challenge field were deduced such as anticipation of obstacles to target achievement and modeling of effective exercise. There were 17 convergence elements in the competition field including game record analysis and creation of game data storage application. Third, total 9 creativity and convergence module elements in the field include modeling of technology improvement for motion and symbolization for motion records. In addition, class modules related to convergence with engineering in the health field, convergence with technology in the challenge field, convergence with art in the competition field and convergence with art and mathematical symbols were proposed.

Analyzing Mathematical Performances of ChatGPT: Focusing on the Solution of National Assessment of Educational Achievement and the College Scholastic Ability Test (ChatGPT의 수학적 성능 분석: 국가수준 학업성취도 평가 및 대학수학능력시험 수학 문제 풀이를 중심으로)

  • Kwon, Oh Nam;Oh, Se Jun;Yoon, Jungeun;Lee, Kyungwon;Shin, Byoung Chul;Jung, Won
    • Communications of Mathematical Education
    • /
    • v.37 no.2
    • /
    • pp.233-256
    • /
    • 2023
  • This study conducted foundational research to derive ways to use ChatGPT in mathematics education by analyzing ChatGPT's responses to questions from the National Assessment of Educational Achievement (NAEA) and the College Scholastic Ability Test (CSAT). ChatGPT, a generative artificial intelligence model, has gained attention in various fields, and there is a growing demand for its use in education as the number of users rapidly increases. To the best of our knowledge, there are very few reported cases of educational studies utilizing ChatGPT. In this study, we analyzed ChatGPT 3.5 responses to questions from the three-year National Assessment of Educational Achievement and the College Scholastic Ability Test, categorizing them based on the percentage of correct answers, the accuracy of the solution process, and types of errors. The correct answer rates for ChatGPT in the National Assessment of Educational Achievement and the College Scholastic Ability Test questions were 37.1% and 15.97%, respectively. The accuracy of ChatGPT's solution process was calculated as 3.44 for the National Assessment of Educational Achievement and 2.49 for the College Scholastic Ability Test. Errors in solving math problems with ChatGPT were classified into procedural and functional errors. Procedural errors referred to mistakes in connecting expressions to the next step or in calculations, while functional errors were related to how ChatGPT recognized, judged, and outputted text. This analysis suggests that relying solely on the percentage of correct answers should not be the criterion for assessing ChatGPT's mathematical performance, but rather a combination of the accuracy of the solution process and types of errors should be considered.