• Title/Summary/Keyword: the least-squares method

Search Result 1,469, Processing Time 0.03 seconds

A Robust Estimation Procedure for the Linear Regression Model

  • Kim, Bu-Yong
    • Journal of the Korean Statistical Society
    • /
    • v.16 no.2
    • /
    • pp.80-91
    • /
    • 1987
  • Minimum $L_i$ norm estimation is a robust procedure ins the sense that it leads to an estimator which has greater statistical eficiency than the least squares estimator in the presence of outliers. And the $L_1$ norm estimator has some desirable statistical properties. In this paper a new computational procedure for $L_1$ norm estimation is proposed which combines the idea of reweighted least squares method and the linear programming approach. A modification of the projective transformation method is employed to solve the linear programming problem instead of the simplex method. It is proved that the proposed algorithm terminates in a finite number of iterations.

  • PDF

Prediction Intervals for LS-SVM Regression using the Bootstrap

  • Shim, Joo-Yong;Hwang, Chang-Ha
    • Journal of the Korean Data and Information Science Society
    • /
    • v.14 no.2
    • /
    • pp.337-343
    • /
    • 2003
  • In this paper we present the prediction interval estimation method using bootstrap method for least squares support vector machine(LS-SVM) regression, which allows us to perform even nonlinear regression by constructing a linear regression function in a high dimensional feature space. The bootstrap method is applied to generate the bootstrap sample for estimation of the covariance of the regression parameters consisting of the optimal bias and Lagrange multipliers. Experimental results are then presented which indicate the performance of this algorithm.

  • PDF

EXPERIMENTAL RESULTS OF W-CYCLE MULTIGRID FOR PLANAR LINEAR ELASTICITY

  • Yoo, Jae-Chil
    • East Asian mathematical journal
    • /
    • v.14 no.2
    • /
    • pp.399-410
    • /
    • 1998
  • In [3], Franca and Stenberg developed several Galerkin least squares methods for the solution of the problem of linear elasticity. That work concerned itself only with the error estimates of the method. It did not address the related problem of finding effective methods for the solution of the associated-linear systems. In this work, we present computational experiments of W-cycle multigrid method. Computational experiments show that the convergence is uniform as the parameter, $\nu$, goes to 1/2.

  • PDF

Biased-Recovering Algorithm to Solve a Highly Correlated Data System (상관관계가 강한 독립변수들을 포함한 데이터 시스템 분석을 위한 편차 - 복구 알고리듬)

  • 이미영
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.3
    • /
    • pp.61-66
    • /
    • 2003
  • In many multiple regression analyses, the “multi-collinearity” problem arises since some independent variables are highly correlated with each other. Practically, the Ridge regression method is often adopted to deal with the problems resulting from multi-collinearity. We propose a better alternative method using iteration to obtain an exact least squares estimator. We prove the solvability of the proposed algorithm mathematically and then compare our method with the traditional one.

ON THE CONSTRUCTION OF A SURFACE FROM DISCRETE DERIVATIVE DATA AND ITS EXTENDED SURFACE USING THE LEAST SQUARES METHOD

  • Kim, Hoi-Sub
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.387-396
    • /
    • 1997
  • For given discrete derivative data in a rectangular re-gion we propose a method to generate an approximated surface which fits the given derivative data in the region and extends smoothly to a sufficiently large rectangular region. Such an extension in nec-essary in the generation of the surface in NC(numerical control) ma-chine.

High-Speed IIR Filter Using Constrained Remez Exchange Algorithm (제한된 Remez Exchange 알고리즘을 이용한 고속 IIR 필터)

  • 김대익;태기철;정진균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.8C
    • /
    • pp.821-826
    • /
    • 2003
  • In this paper, constrained Remez exchange algorithm is proposed to reduce the critical path of an IIR filter. The proposed algorithm is based on Remez exchange algorithm and least squares method. By IIR filter design examples, it is shown that the proposed method can maximally increase speed by 20%.

On Parameter Estimation of Growth Curves for Technological Forecasting by Using Non-linear Least Squares

  • Ko, Young-Hyun;Hong, Seung-Pyo;Jun, Chi-Hyuck
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.89-104
    • /
    • 2008
  • Growth curves including Bass, Logistic and Gompertz functions are widely used in forecasting the market demand. Nonlinear least square method is often adopted for estimating the model parameters but it is difficult to set up the starting value for each parameter. If a wrong starting point is selected, the result may lead to erroneous forecasts. This paper proposes a method of selecting starting values for model parameters in estimating some growth curves by nonlinear least square method through grid search and transformation into linear regression model. Resealing the market data using the national economic index makes it possible to figure out the range of parameters and to utilize the grid search method. Application to some real data is also included, where the performance of our method is demonstrated.

Online Identification of Li-ion Battery's Internal Resistance based on a Recursive Least Squares Method to Prevent Overvoltage/Undervoltage (리튬이온 배터리의 과전압/저전압을 막기 위한 회기 최소 자승법 기반의 실시간 내부 저항 추정방법)

  • Kim, Woo-Yong;Lee, Pyeong-Yeon;Kim, Jonghoon;Kim, Kyung-Soo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.237-239
    • /
    • 2018
  • This paper proposes an on-line estimation algorithm of internal resistance of Li-ion battery based on the recursive least squares method to prevent the overvoltage and undervoltage casing degradation of life cycle of battery. An equivalent circuit model with single time constant is adopted, and under assumptions that the terminal voltage, current and SOC are measured accurately, the discrete time based nonlinear equation of the model can be converted to the linear equation which can be applied to recursive least squares method. Since the coefficients of the discrete time linear equation can be expressed by the parameters of the equivalent circuit model, it is shown that an internal resistance (Ri) can be estimated in real time using the least square method.

  • PDF

Navigation of a Mobile Robot Using Nonlinear Least Squares Optimization (비선형 최적화 방법을 이용한 이동로봇의 주행)

  • Kim, Gon-Woo;Cha, Young-Youp
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.7
    • /
    • pp.1404-1409
    • /
    • 2011
  • The fundamental research for the mobile robot navigation using the numerical optimization method is presented. We define the mobile robot navigation problem as an unconstrained optimization problem to minimize the cost function with the pose error between the goal position and the position of a mobile robot. Using the nonlinear least squares optimization method, the optimal speeds of the left and right wheels can be found as the solution of the optimization problem. Especially, the rotational speed of wheels of a mobile robot can be directly related to the overall speed of a mobile robot using the Jacobian derived from the kinematic model. It will be very useful for applying to the mobile robot navigation. The performance was evaluated using the simulation.

Adaptive Bilinear Lattice Filter(II)-Least Squares Lattice Algorithm (적응 쌍선형 격자필터 (II) - 최소자승 격자 알고리즘)

  • Heung Ki Baik
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.29B no.1
    • /
    • pp.34-42
    • /
    • 1992
  • This paper presents two fast least-squares lattice algorithms for adaptive nonlinear filters equipped with bilinear system models. The lattice filters perform a Gram-Schmidt orthogonalization of the input data and have very good numerical properties. Furthermore, the computational complexity of the algorithms is an order of magnitude snaller than previously algorithm is an order of magnitude smaller than previously available methods. The first of the two approaches is an equation error algorithm that uses the measured desired response signal directly to comprte the adaptive filter outputs. This method is conceptually very simple`however, it will result in biased system models in the presence of measurement noise. The second approach is an approximate least-squares output error solution. In this case, the past samples of the output of the adaptive system itself are used to produce the filter output at the current time. Results of several experiments that demonstrate and compare the properties of the adaptive bilinear filters are also presented in this paper. These results indicate that the output error algorithm is less sensitive to output measurement noise than the squation error method.

  • PDF