• 제목/요약/키워드: the intergalactic medium

검색결과 40건 처리시간 0.023초

IMAGING THE RADIO HALO IN THE ABELL 2256 CLUSTER OF GALAXIES

  • KIM K.-T.
    • 천문학회지
    • /
    • 제32권2호
    • /
    • pp.75-82
    • /
    • 1999
  • Diffuse radio emission in Abell 2256 was detected above 3 $\sigma$ with DRAO observations at 1420 MHz. The halo size is $\~13' {\times}10' (\~1h^{-1}_{50}\;Mpc$) in full extent and is elongated along a position angle of about $112^{\circ}$. The total flux density contained in the halo is 30$\pm$10 mJy at 1420 MHz and its spectral index is -2.04$\pm$0.04, showing no evidence for steepening up to 1420 MHz. Using the size estimate, yields a more reliable equipartition magnetic field strength which is $0.34(1 + k)^{2/7}{\mu}G$. In addition, five new radio sources are identified.

  • PDF

THE VELOCITY INHOMOGENEITY IN THE COMA CLUSTER OF GALAXIES

  • KIM KWANG TAE
    • 천문학회지
    • /
    • 제28권1호
    • /
    • pp.15-30
    • /
    • 1995
  • A velocity inhomogeneity, which is defined as a regional preponderence of either radial or tangential orbits, is searched with a new technique for the Coma cluster of galaxies. It is found within $\~2h^{-1}$ Mpc from the cluster center that the Coma shows conspicuous inhomogeneities in velocity and that the inhomogeneities are real at a $99\%$ level of confidence. Even in the central region (7' - 30' from the center), zones that are dominated by radial and tangential orbits are distinguishable. Defining the cluster's 'equator' as the direction defined by the Coma-A1367 supercluster, tangential orbits dominate the 'polar' zones in the central region. Galaxies that are located in 30'-100' also inhomogeneous in velocity in that the 'polar' zones are mostly radial while the rest is nearly homogeneous. These results indicate that the Coma galaxies are exceedingly more radial in orbit, implying that merging or infalls are either still going on or an earlier virialization is likely to have occurred preferentially near the 'equator'. Incorporating the velocity inhomogeneity into mass estimators, the most appropriate mass is turned out to be $0.4\times10^{15}h^{-1}M_\bigodot(R\;\leq\;0.6h^{-1} Mpc),\;and\;1.0\times10^{15}h^{-1} M_\bigodot(R\;\leq\;2.1h^{-1}Mpc)$. The corresponding mass to blue light ratio on the average is $\~$300h. These estimates are consistent with Merritt (1987) and Hughes (1989) and the MILE is seemed to favour the mass-follows-light models than the uniform spread of dark matter throughout the cluster.

  • PDF

2D genus topology of 21-cm differential brightness temperature during cosmic reionization

  • Ahn, Kyung-Jin;Hong, Sungwook E.;Park, Chang-Bom;Kim, Uu-Han;Iliev, Ilian T.;Mellema, Garrelt
    • 천문학회보
    • /
    • 제35권2호
    • /
    • pp.43.1-43.1
    • /
    • 2010
  • A novel method to characterize the topology of the early-universe intergalactic medium during the epoch of cosmic reionization is presented. The 21-cm radiation background from high redshift is analyzed through calculation of the 2-dimensional (2D) genus. The radiative transfer of hydrogen-ionizing photons and ionization-rate equations are calculated in a suite of numerical simulations under various input parameters. The 2D genus is calculated from the mock 21-cm images of high-redshift universe. We construct the 2D genus curve by varying the threshold differential brightness temperature, and compare this to the 2D genus curve of the underlying density field. We find that (1) the 2D genus curve reflects the evolutionary track of cosmic reionization and (2) the 2D genus curve can discriminate between certain reionization scenarios and thus indirectly probe the properties of radiation-sources. Choosing the right beam shape of a radio antenna is found crucial for this analysis. Square Kilometer Array (SKA) is found to be a suitable apparatus for this analysis in terms of sensitivity, even though some deterioration of the data for this purpose is unavoidable under the planned size of the antenna core.

  • PDF

TURBULENCE IN THE OUTSKIRTS OF THE MILKY WAY

  • Sanchez-Salcedo, F.J.;Santillan, A.;Franco, Jose
    • 천문학회지
    • /
    • 제40권4호
    • /
    • pp.171-177
    • /
    • 2007
  • In external galaxies, the velocity dispersion of the atomic hydrogen gas shows a remarkably flat distribution with the galactocentric radius. This has been a long-standing puzzle because if the gas velocity dispersion is due to turbulence caused by supernova explosions, it should decline with radius. After a discussion on the role of spiral arms and ram pressure in driving interstellar turbulence in the outer parts of galactic disks, we argue that the constant bombardment by tiny high-velocity halo clouds can be a significant source of random motions in the outer disk gas. Recent observations of the flaring of H I in the Galaxy are difficult to explain if the dark halo is nearly spherical as the survival of the streams of tidal debris of Sagittarius dwarf spheroidal galaxy suggests. The radial enhancement of the gas velocity dispersion (at R > 25 kpc) due to accretion of cloudy gas might naturally explain the observed flaring in the Milky Way. Other motivations and implications of this scenario have been highlighted.

The WSRT HI Imaging Study of Gas-rich Galaxies in the Outskirts of the Virgo Cluster

  • Yoon, Hyein;Chung, Aeree;Sengupta, Chandreyee;Wong, O. Ivy;Bureau, Martin;Rey, Soo-Chang;van Gorkom, J.H.
    • 천문학회보
    • /
    • 제40권1호
    • /
    • pp.76.2-76.2
    • /
    • 2015
  • We present the results of the Westerbork Synthesis Radio Telescope (WSRT) HI imaging study of seven late-type galaxies. They are located in the outskirts of the Virgo cluster, possibly along a filament connected to Virgo from the north-west. Most galaxies in this region are found to be HI-rich, containing more HI gas compared to field galaxies with similar size and optical luminosity. The positions of the sample with respect to the cluster and their high HI mass-to-light ratios suggest that the selected galaxies might be accreting more gas from their surroundings while falling into the cluster. By high-resolution HI imaging, we aim to find evidence that galaxies are pre-processed by gas accretion from the intergalactic medium and/or gas-rich neighbors. We probe the detailed HI morphology/kinematics and the star formation properties of the sample. All of these galaxies are found with a large HI disk which is quite extended compared to their stellar disk. Together with kinematical peculiarities, this strongly suggests that cold gas accretion is responsible for active star formation in these galaxies.

  • PDF

THE QUEST FOR COSMIC RAY PROTONS IN GALAXY CLUSTERS

  • PFROMMER C.;ENSSLIN T. A.
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.455-460
    • /
    • 2004
  • There have been many speculations about the presence of cosmic ray protons (CRps) in galaxy clusters over the past two decades. However, no direct evidence such as the characteristic $\gamma$-ray signature of decaying pions has been found so far. These pions would be a direct tracer of hadronic CRp interactions with the ambient thermal gas also yielding observable synchrotron and inverse Compton emission by additionally produced secondary electrons. The obvious question concerns the type of galaxy clusters most likely to yield a signal: Particularly suited sites should be cluster cooling cores due to their high gas and magnetic energy densities. We studied a nearby sample of clusters evincing cooling cores in order to place stringent limits on the cluster CRp population by using non-detections of EGRET. In this context, we examined the possibility of a hadronic origin of Coma-sized radio halos as well as radio mini-halos. Especially for mini-halos, strong clues are provided by the very plausible small amount of required CRp energy density and a matching radio profile. Introducing the hadronic minimum energy criterion, we show that the energetically favored CRp energy density is constrained to $2\%{\pm}1\%$ of the thermal energy density in Perseus. We also studied the CRp population within the cooling core region of Virgo using the TeV $\gamma$-ray detection of M 87 by HEGRA. Both the expected radial $\gamma$-ray profile and the required amount of CRp support this hadronic scenario.

EUV AND SOFT X-RAY EMISSION IN CLUSTERS OF GALAXIES

  • BOWYER STUART
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.295-297
    • /
    • 2004
  • Observations with EUVE, ROSAT, and BeepoSAX have shown that some clusters of galaxies produce intense EUV emission. These findings have produced considerable interest; over 100 papers have been published on this topic in the refereed literature. A notable suggestion as to the source of this radiation is that it is a 'warm' (106 K) intracluster medium which, if present, would constitute the major baryonic component of the universe. A more recent variation of this theme is that this material is 'warm-hot' intergalactic material condensing onto clusters. Alternatively, inverse Compton scattering of low energy cosmic rays against cosmic microwave background photons has been proposed as the source of this emission. Various origins of these particles have been posited, including an old (${\~}$Giga year) population of cluster cosmic rays; particles associated with relativistic jets in the cluster; and cascading particles produced by shocks from sub-cluster merging. The observational situation has been quite uncertain with many reports of detections which have been subsequently contradicted by analyses carried out by other groups. Evidence supporting a thermal and a non-thermal origin has been reported. The existing EUV, FUV, and optical data will be briefly reviewed and clarified. Direct observational evidence from a number of different satellites now rules out a thermal origin for this radiation. A new examination of subtle details of the EUV data suggests a new source mechanism: inverse Compton scattered emission from secondary electrons in the cluster. This suggestion will be discussed in the context of the data.

Investigating X-ray cavities and the environmental effects

  • Shin, Jaejin;Woo, Jong-Hak;Mulchaey, John S.
    • 천문학회보
    • /
    • 제41권1호
    • /
    • pp.34.2-34.2
    • /
    • 2016
  • X-ray cavities are typically detected as surface brightness depression in X-ray diffuse emission from hot gas in high resolution X-ray images (i.e., Chandra and XMM-Newton). Showing the coincidence of location with radio jets, X-ray cavities imply that the radio jets interact with interstellar/intergalactic medium. It is important to understand them since they can be a clue of understanding AGN feedback to their host galaxies. To understand the physics of the AGN feedback, X-ray cavity has been actively studied while there are only a few statistical studies on X-ray cavity based on small or incomplete samples. Hence, a systematic study with a large sample is needed. With the condition of sufficient X-ray photons to detect surface brightness depression, we constructed a large sample of 133 galaxy clusters, galaxy groups, and individual galaxies to investigate X-ray cavities. We detected 201 cavities from 94 objects using two detection methods (i.e., beta-modeling and unsharp masking method), and confirmed the cavity size-distance relation over a large dynamical range. The size-distance relation does not vary for different environments (i.e., galaxy cluster, groups, and individual galaxies), suggesting that there is little environmental effect on the formation of X-ray cavity.

  • PDF

MAGNETIC FIELD IN THE LOCAL UNIVERSE AND THE PROPAGATION OF UHECRS

  • DOLAG KLAUS;GRASSO DARIO;SPRINGEL VOLKER;TKACHEV IGOR
    • 천문학회지
    • /
    • 제37권5호
    • /
    • pp.427-431
    • /
    • 2004
  • We use simulations of large-scale structure formation to study the build-up of magnetic fields (MFs) in the intergalactic medium. Our basic assumption is that cosmological MFs grow in a magnetohy-drodynamical (MHD) amplification process driven by structure formation out of a magnetic seed field present at high redshift. This approach is motivated by previous simulations of the MFs in galaxy clusters which, under the same hypothesis that we adopt here, succeeded in reproducing Faraday rotation measurements (RMs) in clusters of galaxies. Our ACDM initial conditions for the dark matter density fluctuations have been statistically constrained by the observed large-scale density field within a sphere of 110 Mpc around the Milky Way, based on the IRAS 1.2-Jy all-sky redshift survey. As a result, the positions and masses of prominent galaxy clusters in our simulation coincide closely with their real counterparts in the Local Universe. We find excellent agreement between RMs of our simulated galaxy clusters and observational data. The improved numerical resolution of our simulations compared to previous work also allows us to study the MF in large-scale filaments, sheets and voids. By tracing the propagation of ultra high energy (UHE) protons in the simulated MF we construct full-sky maps of expected deflection angles of protons with arrival energies $E = 10^{20}\;eV$ and $4 {\times} 10^{19}\;eV$, respectively. Accounting only for the structures within 110 Mpc, we find that strong deflections are only produced if UHE protons cross galaxy clusters. The total area on the sky covered by these structures is however very small. Over still larger distances, multiple crossings of sheets and filaments may give rise to noticeable deflections over a significant fraction of the sky; the exact amount and angular distribution depends on the model adopted for the magnetic seed field. Based on our results we argue that over a large fraction of the sky the deflections are likely to remain smaller than the present experimental angular sensitivity. Therefore, we conclude that forthcoming air shower experiments should be able to locate sources of UHE protons and shed more light on the nature of cosmological MFs.

The Infrared Medium-deep Survey. VIII. Quasar Luminosity Function at z ~ 5

  • Kim, Yongjung;Im, Myungshin;Jeon, Yiseul;Kim, Minjin;Pak, Soojong;Hyun, Minhee;Taak, Yoon Chan;Shin, Suhyun;Lim, Gu;Paek, Gregory S.H.;Paek, Insu;Jiang, Linhua;Choi, Changsu;Hong, Jueun;Ji, Tae-Geun;Jun, Hyunsung D.;Karouzos, Marios;Kim, Dohyeong;Kim, Duho;Kim, Jae-Woo;Kim, Ji Hoon;Lee, Hye-In;Lee, Seong-Kook;Park, Won-Kee;Yoon, Yongmin;Byeon, Seoyeon;Hwang, Sungyong;Kim, Joonho;Kim, Sophia;Park, Woojin
    • 천문학회보
    • /
    • 제45권1호
    • /
    • pp.34.3-34.3
    • /
    • 2020
  • Faint z ~ 5 quasars with M1450 ~ -23 mag are known to be the potentially important contributors to the ultraviolet ionizing background in the post-reionization era. However, their number density has not been well determined, making it difficult to assess their role in the early ionization of the intergalactic medium (IGM). In this work, we present the updated results of our z ~ 5 quasar survey using the Infrared Medium-deep Survey (IMS), a near-infrared imaging survey covering an area of 85 square degrees. From our spectroscopic observations with the Gemini Multi-Object Spectrograph (GMOS) on the Gemini-South 8 m Telescope, we discovered eight new quasars at z ~ 5 with -26.1 ≤ M1450 ≤ -23.3. Combining our IMS faint quasars with the brighter Sloan Digital Sky Survey (SDSS) quasars, we derive, for the first time, the z ~ 5 quasar luminosity function (QLF) without any fixed parameters down to the magnitude limit of M1450 = -23 mag. We find that the faint-end slope of the QLF is very flat (-1.2) with a characteristic luminosity of -25.7 mag. The number density of z ~ 5 quasars from the QLF gives lower ionizing emissivity and ionizing photon density than those in previous works. These results imply that quasars are responsible for only 10-20% of the photons required to completely ionize the IGM at z ~ 5, disfavoring the idea that quasars alone could have ionized the IGM at z ~ 5.

  • PDF