• Title/Summary/Keyword: the ground vibrations

Search Result 166, Processing Time 0.028 seconds

The Influence of Ground Stability with Blasting Vibration (발파진동이 지반의 안정에 미치는 영향)

  • 신진환;오세욱
    • Journal of the Korean Society of Safety
    • /
    • v.12 no.4
    • /
    • pp.102-107
    • /
    • 1997
  • Ground vibrations are an integral part of the process of rock blasting. The sudden acceleration of the rock by the detonation gas pressure acting on the drillhole walls induces dynamic stresses in the surrounding rock mass. This sets up a wave motion in the ground much like the motion in a bowl of jelly when disturbed by the action of a spoon. The wave motion spreads concentrically from the blasting site, particularly along the ground surface, and is therefore attenuated, since its fixed energy is spread over a greater and greater mass of material as it moves away from its origin. Some theoretical aspects of the generation and propagation of vibrations produced in rock blasting are analyzed; although it must be indicated that this is just a mere approximation to the problem, as the actual phenomena are much more complex owing to the interaction of different types of waves and their modifying mechanics.

  • PDF

JV Rock Driving Method (JV 공법)

  • Kim, Kwang-Il;Inoue Hajimu;Toshio Teraoka;Yeo, Byung-Chul
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1995.10a
    • /
    • pp.41.1-44
    • /
    • 1995
  • The JV method is an epochal civil engineering style that boasts of significant pile driving power through low-vibration works by ideally combining the high pressure water injected from the water jet cutter and the vibrations combining from the vibratory pile driver extractors. As a result, you are ensured stable and safe pile driving and extraction in bedrocks that were previously impossible with conventional machines and methods. The other advantage is its high performance and a low-pollution characteristis that is ensured by suppressing ground vibrations. This is a very important factor since it often becomes an issue upon civil engineering in the city. With the addition of this method. the range of steel pipe pile, steel sheet pile and other steel pile use has been drastically expanded. Other advantages of this method incldes accurate works, shortening of the construction period and improved work performance. Since the minimun amount of high pressure water is used to drill the ground, it not only loosens the ground, but also cuts the ground at the tip of the pile to improve driving works.

  • PDF

Low frequency Long Duration Blast Vibrations and Their Effect on Residential Structures (지속시간이 긴 저주파 발파진동과 주거 구조물에 미치는 영향)

  • Roy M. P.;Sirveiya A. K.;Singh P. K.
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.57-66
    • /
    • 2005
  • A major concern with blasting at surface mines is generation of ground vibration, air blast, flyrock, dust & fume and their impact on nearby structures and environment. A study was conducted at a coal mine in India which produces 10 million tonne of coal and 27 million cubic meter of overburden per annum. Draglines and shovels with dumpers carry out the removal of overburden. Detonation of 100 tonnes of explosives in a blasting round is a common practice of the mine. These large sized blasts often led to complaints from the nearby inhabitants regarding ground vibrations and their affects on their houses. Eighteen dragline blasts were conducted and their impacts on nearby structures were investigated. Extended seismic arrays were used to identify the vibration characteristics within a few tens meters of the blasts and also as modified by the media at distances over 5 km. 10 to 12 seismographs were deployed in an array to gather the time histories of vibrations. A signature blast was conducted to know the fundamental frequency of the particular transmitting media between the blast face and the structures. The faster decay of high frequency components was observed. It was also observed that at distances of 5km, the persistence of vibrations in the structures was substantially increased by more 10 seconds. The proximity of the frequency of the ground vibration to the structure's fundamental frequencies produced the resonance in the structures. On the basis of the fundamental frequency of the structures, the delay interval was optimized, which resulted into lower amplitude and reduced persistence of vibration in the structures.

Consideration on the Relation between Vibration Level and Peak Particle Velocity in Regulation of Ground Vibration (지반진동 규제기준에서 진동레벨과 진동속도의 상호관계에 대한 고찰)

  • Choi, Byung-Hee;Ryu, Chang-Ha
    • Explosives and Blasting
    • /
    • v.30 no.2
    • /
    • pp.1-8
    • /
    • 2012
  • The only law related to airblast and ground vibration control in Korea is the Noise and Vibration Control Act enforced by the Ministry of Environment. But this law mainly deals with the annoyance aspects of noises and vibrations in ordinary human life. Hence, the law defines the safety criteria of ground vibration as the vibration level (VL) of dB(V) unit. The ground vibrations produced from blasting, however, have the unique characteristics that can be shown in shock vibrations, and the duration is also very short compared to the vibrations from machinery, tools or facilities. Hence, vibration regulations for blasting operations usually define the safety criterion as the peak particle velocity (PPV) considering the effect of ground vibrations to structural damage. Notwithstanding, there are several attempts that predict VL from PPV or estimate VL based on the scaled distances (SD; in unit of $m/kg^{1/2}$ or $m/kg^{1/3}$) without considering their frequency spectra. It appears that these attempts are conducted mainly for the purpose of satisfying the law in blasting contracts. But, in principle there could no correlation between peaks of velocity and acceleration over entire frequency spectrum. Therefore, such correlations or estimations should be conducted only for the waves with the same or very similar frequency spectra.

Three-dimensional finite element modelling and dynamic response analysis of track-embankment-ground system subjected to high-speed train moving loads

  • Fu, Qiang;Wu, Yang
    • Geomechanics and Engineering
    • /
    • v.19 no.3
    • /
    • pp.241-254
    • /
    • 2019
  • A finite element approach is presented to examine ground vibration characteristics under various moving loads in a homogeneous half-space. Four loading modes including single load, double load, four-load, and twenty-load were simulated in a finite element analysis to observe their influence on ground vibrations. Four load moving speeds of 60, 80, 100, and 120 m/s were adopted to investigate the influence of train speed to the ground vibrations. The results demonstrated that the loading mode in a finite element analysis is reliable for train-induced vibration simulations. Additionally, a three-dimensional finite element model (3D FEM) was developed to investigate the dynamic responses of a track-ballast-embankment-ground system subjected to moving loads induced by high-speed trains. Results showed that vibration attenuations and breaks exist in the simulated wave fronts transiting through different medium materials. These tendencies are a result of the difference in the Rayleigh wave speeds of the medium materials relative to the speed of the moving train. The vibration waves induced by train loading were greatly influenced by the weakening effect of sloping surfaces on the ballast and embankment. Moreover, these tendencies were significant when the vibration waves are at medium and high frequency levels. The vibration waves reflected by the sloping surface were trapped and dissipated within the track-ballast-embankment-ground system. Thus, the vibration amplitude outside the embankment was significantly reduced.

Measurement and Control of Ground Vibrations due to Precast Concrete Pile-driving by Diesel Hammer (디젤해머에 의한 콘크리트말뚝 항타시(抗打時) 발생(發生)되는 지반진동(地盤振動)의 측정(測定) 및 영향평가(影響評價))

  • Park, Yean Soo;Chon, Chun Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.9 no.1
    • /
    • pp.71-78
    • /
    • 1989
  • This Paper measures and analyzes ground vibrations induced during precast concrete pile-driving using diesel hammer at radii varying from 9m to 30m to evaluate effects of such vibrations associated with deep foundation piling operations near the residential of commercial areas. From this study, characteristics for attenuation and frequency of the vibrations casued by pile-driving are established and the empirical equation for predicting peak velocity and acceleration levels are obtained. This equation can be used to predict the peak vibration levels and select the appropriate hammers for future projects where similar soil conditions to this test site are encountered.

  • PDF

Evaluation of Vibrations and Displacements of an Old Masonry Wall Induced by Soil-Cement Construction (소일-시멘트 시공 시 인접 석축 성벽 문화재에 발생한 진동 및 변위 평가)

  • Kim, Young-Seok;Choo, Jin-Hyun;Cho, Yong-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.957-962
    • /
    • 2010
  • Foundation systems in urban sites are often necessary to be constructed with little vibrations and displacements to surroundings. In order to assess applicability of a new foundation system for urban sites based on soil-cement mixing technique, vibrations and displacements induced by soil-cement construction process is evaluated. Soil-cement columns were constructed to reinforce soft ground near an old masonry wall in an urban redevelopment site, and the vibrations and displacements of the old masonry wall during construction were measured. Results indicate that the vibrations and displacements induced by soil-cement construction were little and not critical to the stability of the masonry wall.

  • PDF

The Vibrational Evaluation of Railway Station by the Train Service (열차운행에 따른 철도역사의 진동영향 평가)

  • Kim, Byoung-Sam;Lee, Tae-Keun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.10
    • /
    • pp.968-975
    • /
    • 2010
  • The high interest for the ground vibrations which is caused by the train service is risen. When the trains are passed, a serious force is applied to ground and the caused vibration is propagated to the area of the building by the ground and rocks. This vibration comes to feel in the residents with the direct vibration, it is radiated in sound. The caused vibration and radiated sound affect the human's life, and this vibration brings about the operation interruption of the equipment which is sensitive to the vibration, or will bring about the structural damage of the building. In this study, the effect of the vibrations caused by the passing trains on the railway station and buildings is investigated by vibration measurement. Indoor and outdoor measurement is carried out by each trains.

Experience of the Application of a Rock Cracking Method Using Steam Pressure to Tunnel Excavation (증기압을 이용한 파암공법의 현장 적용성 연구)

  • Kim, Duk-young;Kim, Sun-Woong
    • Explosives and Blasting
    • /
    • v.35 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • In this study, the characteristics of a new rock cracking method using steam pressure are briefly presented. The rock cracking method was originally developed as a means to decrease the ground vibrations from underground rock excavations. The validation tests were also conducted by applying the method to an actual rock tunnel under construction. The ground vibrations were measured in the vicinity of the test site. The measured vibration results were compared with the values predicted by an attenuation equation, which had been proposed by a company in Japan. Also, a simple cost assessment for the method was conducted to demonstrate its cost effectiveness in underground tunnel excavations.