• Title/Summary/Keyword: the flexure strength

Search Result 304, Processing Time 0.033 seconds

Interface Behavior of Concrete Infilled Steel Tube Subjected to Flexure (휨을 받는 콘크리트 충전 강관의 계면거동)

  • Lee, Ta;Jeong, Jong-Hyun;Kim, Hyeng-Ju;Lee, Yong-Hak
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.1
    • /
    • pp.9-17
    • /
    • 2015
  • Interface behavior of concrete-infilled steel tube (CFT) was investigated based on the experimental observations and numerical analyses. Laboratory tests were performed for twelve CFTs that consisted of two different cases of diameters where each diameter case was composed of three different cases of shear span length. Thereby, diameter and shear span parameters were considered to prove the question of whether there exists interface slip between steel tube and infilled-concrete. Confining effect of steel tube to infilled concrete was also investigated by measuring lateral strain as well as longitudinal strain. Based on the study, it was concluded that confining effect of steel tube to infilled-concrete is not influential under flexural loading and therefore, the sectional analysis is an effective way to estimate the flexural strength of CFT.

Experimental investigation on flexural behaviour of HSS stud connected steel-concrete composite girders

  • Prakash, Amar;Anandavalli, N.;Madheswaran, C.K.;Lakshmanan, N.
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.239-258
    • /
    • 2012
  • In this paper, experimental investigations on high strength steel (HSS) stud connected steel-concrete composite (SCC) girders to understand the effect of shear connector density on their flexural behaviour is presented. SCC girder specimens were designed for three different shear capacities (100%, 85%, and 70%), by varying the number of stud connectors in the shear span. Three SCC girder specimens were tested under monotonic/quasi-static loading, while three similar girder specimens were subjected to non-reversal cyclic loading under simply supported end conditions. Details of casting the specimens, experimental set-up, and method of testing, instrumentation for the measurement of deflection, interface-slip and strain are discussed. It is found that SCC girder specimen designed for full shear capacity exhibits interface slip for loads beyond 25% of the ultimate load capacity. Specimens with lesser degree of shear connection show lower values of load at initiation of slip. Very good ductility is exhibited by all the HSS stud connected SCC girder specimens. It is observed that the ultimate moment of resistance as well as ductility gets reduced for HSS stud connected SCC girder with reduction in stud shear connector density. Efficiency factor indicating the effectiveness of high strength stud connectors in resisting interface forces is estimated to be 0.8 from the analysis. Failure mode is primarily flexure with fracturing of stud connectors and characterised by flexural cracking and crushing of concrete at top in the pure bending region. Local buckling in the top flange of steel beam was also observed at the loads near to failure, which is influenced by spacing of studs and top flange thickness of rolled steel section. One of the recommendations is that the ultimate load capacity can be limited to 1.5 times the plastic moment capacity of the section such that the post peak load reduction is kept within limits. Load-deflection behaviour for monotonic tests compared well with the envelope of load-deflection curves for cyclic tests. It is concluded from the experimental investigations that use of HSS studs will reduce their numbers for given loading, which is advantageous in case of long spans. Buckling of top flange of rolled section is observed at failure stage. Provision of lips in the top flange is suggested to avoid this buckling. This is possible in case of longer spans, where normally built-up sections are used.

A Study on Compact Section Requirements for Plate Girder Web Panels with Longitudinal Stiffeners (수평보강재가 설치된 플레이트거더 복부판의 조밀기준에 관한 연구)

  • Lee, Myung Soo;Lee, Doo Sung;Lee, Sung Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.6A
    • /
    • pp.503-512
    • /
    • 2010
  • In AASHTO LRFD (2007), a compact section is defined as a section in which no premature failure caused by local buckling of web and flange plate or later buckling occurs before the section reaches the plastic moment, Mp. The current AASHTO LRFD (2007) provides the compact section requirement by limiting the web slenderness only for webs without longitudinal stiffeners. The role of longitudinal stiffener is to increase the web buckling strength caused flexure. Although a web does not satisfy the compactness requirement without longitudinal stiffeners, the web buckling can be prevented by use of valid longitudinal stiffeners. Therefore, the web may be able to reach the plastic moment. However, the reason why a longitudinal stiffener may not be used to satisfy compactness requirement is not cleary explained in AASHTO LRFD (2007). In this study, the buckling and ultimate strength behaviors of stiffened webs subjected to bending are investigated through the linear buckling and nonlinear finite element analysis. It is found that steel plate girders having webs that do not satisfy the compactness requirement are able to reach the plastic moment if the longitudinal stiffeners have sufficient rigidities and are properly located. From a nonlinear regression analysis of the results, a new compactness requirement is suggested for webs stiffened with one longitudinal stiffener.

Material Properties and Structural Characteristics on Flexure of Steel Fiber-Reinforced Ultra-High-Performance Concrete (강섬유 보강 초고성능 콘크리트의 재료특성 및 휨 거동 역학적 특성)

  • Kim, Kyoung-Chul;Yang, In-Hwan;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.177-185
    • /
    • 2016
  • This paper concerns the flexural behavior of steel fiber-reinforced ultra-high-performance concrete (UHPC) beams with compressive strength of 150 MPa. It presents experimental research results of hybrid steel fiber-reinforced UHPC beams with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at investigating of compressive and tensile behavior of UHPC to perform a reasonable prediction for flexural capacity of UHPC beams. Tensile behavior modeling was performed using load-crack mouth opening displacement relationship obtained from bending test. The experimental results show that steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range from 1.6 to 3.0, which means high ductility of hybrid steel fiber-reinforced UHPC. Test results and numerical analysis results for the moment-curvature relationship are compared. Though the numerical analysis results for the bending capacity of the UHPC beam without rebar is larger than test result, the overall comparative results show that the bending capacity of steel fiber-reinforced UHPC beams with compressive strength of 150 MPa can be predicted by using the established method in this paper.

Interfacial and Mechanical Properties of MGF Reinforced p-DCPD Composites with Surface Treatments (MGF 표면처리에 따른 p-DCPD 복합재료의 계면 및 기계적 특성 연구)

  • Kwon, Dong-Jun;Shin, Pyeong-Su;Kim, Jong-Hyun;Ha, Jung-Chan;Park, Joung-Man
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.282-287
    • /
    • 2016
  • p-DCPD (poly dicyclopentadiene) is the resin that the versatile mechanical properties can be changeable via the control of inner monomer and catalysts. In this work, to improve the strength of composites, surface treated MGF (milled glass fiber) was used as an reinforcement in p-DCPD by molybdenum (Mo) catalyst matrix. The optimum concentration of surface treatment was obtained and the cohesion of MGF themselves increased with concentration. In case of 0.2 wt% silane concentration, the maximized mechanical properties of MGF/p-DCPD composite exhibited because of minimized MGF cohesion. When butyl silane showing minimizing cohesion was used as the optimized alkyl length, high tensile and flexure strength exhibited due to the steric hindrance effect among MGFs. Mechanical and their fractured surfaces of MGF/p-DCPD composites was compared for 4 different chemical functional groups. Norbornene functional groups containing similar chemical structure to DCPD matrix exhibited higher interfacial adhesion between MGFs and DCPD matrix.

Effect of location of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture (광중합형 레진에 함침시킨 유리섬유의 위치가 상악 총의치의 파절강도와 파절양상에 미치는 영향)

  • Yoo, Hyun-Sang;Sung, Su-Jin;Jo, Jae-Young;Lee, Do-Chan;Huh, Jung-Bo;Jeong, Chang-Mo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.50 no.4
    • /
    • pp.279-284
    • /
    • 2012
  • Purpose: This study evaluated the effect of glass fiber pre-impregnated with light-curing resin on the fracture strength and fracture modes of a maxillary complete denture. Materials and methods: Maxillary acrylic resin complete dentures reinforced with glass fiber pre-impregnated with light-curing resin (SES MESH, INNO Dental Co., Yeoncheongun, Korea) and without reinforcement were tested. The reinforcing material was embedded in the denture base resin and placed different regions (Control, without reinforcement; Group A, center of anterior ridge; Group B, rugae area; Group C, center of palate; Group D, full coverage of denture base). The fracture strength and fracture modes of a maxillary complete denture were tested using Instron test machine (Instron Co., Canton, MA, USA) at a 5.0 mm/min crosshead speed. The flexure load was applied to center of denture with a 20 mm diameter ball attachment. When fracture occurred, the fracture mode was classified based on fracture lines. The data were analyzed with one-way ANOVA at the significance level of 0.05. Results: There were non-significant differences (P>.05) in the fracture strength among test groups. Group A showed anteroposterior fracture and posterior fracture mainly, group B, C and control group showed partial fracture on center area mostly. Most specimen of group D showed posterior fracture. Conclusion: The location and presence of the fiber reinforcement did not affect the fracture strength of maxillary complete denture. However, reinforcing acrylic resin denture with glass fiber has a tendency to suppress the crack.

Numerical Study on Wire Strength Under Both Tension and Deflection for Use as Prestressing Steel (인장과 휨을 동시에 받는 프리스트레스 강선의 굴절인장성능 평가)

  • Kim, Jin-Kook;Seong, Taek-Ryong;Yang, Jun-Mo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.147-153
    • /
    • 2019
  • The prestressing steel wire, which is applied a tension to reinforce the structure, is applied flexure simultaneously by the duct and the deviator. In order to evaluate the deflected tensile performance of the prestressing steel wire subjected to both tensile and flexural stresses, the numerical analysis for 600 cases with variables of wire diameters, mandrel diameters, and friction coefficient between mandrel and steel wire was performed. As the result of analysis, the larger the diameter of the steel wire was, the lower the deflected tensile performance was, and the effect decreased with the increase of the wire elongation. The effect of mandrel diameter and friction coefficient between mandrel and wire on the deflected tensile performance of the wire was very small. But the deflected tensile performance and the friction coefficient between mandrel and strand showed a relatively high correlation. Therefore, it is necessary to make enough large elongation to secure the deflected tensile performance. If there is a restriction on the elongation, it is necessary to reduce the diameter of the steel wire to an appropriate value, and to increase the friction between steel wires by adjusting the surface condition of the steel wire.

Design Approach for Boundary Element of Flexure-Governed RC Slender Shear Walls Based on Displacement Ductility Ratio (휨 항복형 철근콘크리트 전단벽의 경계요소설계를 위한 변위연성비 모델제시)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.687-694
    • /
    • 2014
  • This study established a displacement ductility ratio model for ductile design for the boundary element of shear walls. To determine the curvature distribution along the member length and displacement at the free end of the member, the distributions of strains and internal forces along the shear wall section depth were idealized based on the Bernoulli's principle, strain compatibility condition, and equilibrium condition of forces. The confinement effect at the boundary element, provided by transverse reinforcement, was calculated using the stress-strain relationship of confined concrete proposed by Razvi and Saatcioglu. The curvatures corresponding to the initial yielding moment and 80% of the ultimate state after the peak strength were then conversed into displacement values based on the concept of equivalent hinge length. The derived displacement ductility ratio model was simplified by the regression approach using the comprehensive analytical data obtained from the parametric study. The proposed model is in good agreement with test results, indicating that the mean and standard deviation of the ratios between predictions and experiments are 1.05 and 0.19, respectively. Overall, the proposed model is expected to be available for determining the transverse reinforcement ratio at the boundary element for a targeted displacement ductility ratio.

The Effect of Mild Tensile Reinforcement and Effective Prestress on the Flexural Performance of the Prestressed Lightweight Concrete Beams with Unbonded Tendons (비부착 프리스트레스트 경량 콘크리트 보의 휨 거동에 대한 부착 철근과 유효 프리스트레스의 영향)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok;Byun, Hang-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.5
    • /
    • pp.617-626
    • /
    • 2011
  • Seven post-tensioned lightweight concrete (LWC) beam specimens were tested under a symmetrical two-point top loading system. The parameters investigated were the amounts of mild longitudinal reinforcement and effective prestressing. The design compressive strength and dry density of the LWC tested were 30 MPa and 1,770 $kg/m^3$, respectively. Similar to post-tensioned normal weight concrete (NWC) beams, the crack propagation and stress increase of the unbonded tendons were significantly affected by the amounts of mild longitudinal reinforcement and effective prestressing. With the increase in the amounts of mild longitudinal reinforcement and effective prestressing, the serviceability and flexural capacity of the beams were enhanced whereas the stress increase in the unbonded tendons decreased. To control the crack width in post-tensioned LWC beams, a minimum amount of mild longitudinal reinforcement specified in ACI 318-08 provision is required. The flexural behavior of post-tensioned LWC beams and stress increase of the unbonded tendons could be rationally predicted by the proposed non-linear two-dimensional analysis. On the other hand, ACI 318-08 flexure provision was too conservative about the post-tensioned LWC beams.

Are critical size bone notch defects possible in the rabbit mandible?

  • Carlisle, Patricia L.;Guda, Teja;Silliman, David T.;Hale, Robert G.;Baer, Pamela R. Brown
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.45 no.2
    • /
    • pp.97-107
    • /
    • 2019
  • Objectives: Small animal maxillofacial models, such as non-segmental critical size defects (CSDs) in the rabbit mandible, need to be standardized for use as preclinical models of bone regeneration to mimic clinical conditions such as maxillofacial trauma. The objective of this study is the establishment of a mechanically competent CSD model in the rabbit mandible to allow standardized evaluation of bone regeneration therapies. Materials and Methods: Three sizes of bony defect were generated in the mandibular body of rabbit hemi-mandibles: $12mm{\times}5mm$, $12mm{\times}8mm$, and $15mm{\times}10mm$. The hemi-mandibles were tested to failure in 3-point flexure. The $12mm{\times}5mm$ defect was then chosen for the defect size created in the mandibles of 26 rabbits with or without cautery of the defect margins and bone regeneration was assessed after 6 and 12 weeks. Regenerated bone density and volume were evaluated using radiography, micro-computed tomography, and histology. Results: Flexural strength of the $12mm{\times}5mm$ defect was similar to its contralateral; whereas the $12mm{\times}8mm$ and $15mm{\times}10mm$ groups carried significantly less load than their respective contralaterals (P<0.05). This demonstrated that the $12mm{\times}5mm$ defect did not significantly compromise mandibular mechanical integrity. Significantly less (P<0.05) bone was regenerated at 6 weeks in cauterized defect margins compared to controls without cautery. After 12 weeks, the bone volume of the group with cautery increased to that of the control without cautery after 6 weeks. Conclusion: An empty defect size of $12mm{\times}5mm$ in the rabbit mandibular model maintains sufficient mechanical stability to not require additional stabilization. However, this defect size allows for bone regeneration across the defect. Cautery of the defect only delays regeneration by 6 weeks suggesting that the performance of bone graft materials in mandibular defects of this size should be considered with caution.